Refinar búsqueda
Resultados 1-5 de 5
Microplastics and nanoplastics in food, water, and beverages; part I. Occurrence Texto completo
2022
Vitali, Clementina | Peters, Rudolph | Janssen, Hans-Gerd | W.F.Nielen, Michel
In recent years, the presence of microplastics (MP) and nanoplastics (NP) has been assessed in several environmental matrices, including the marine environment and agricultural soil, suggesting those pollutants are likely to enter the food web. However, there is still a severe lack of information about the occurrence of plastic particles in our food, partially due to the multidimensionality of the data necessary to fully describe MP contamination and the consequent difficulty in validating analytical methods. In this review, consisting of two parts, preliminary results about the presence of MP in food, water, and beverages are summarized (Part I) and several approaches for the characterization of micro- and nano-sized plastic particles are reported and discussed (Part II). The information gathered in this manuscript highlights the need for a more comprehensive knowledge of MP/NP occurrence along the food chain in order to assess the food safety risk related to those contaminants and implement strategies for their monitoring in products intended for human consumption. Therefore, an outlook of the field towards a coherent, consistent, and policy-relevant data collection and standardization is included in this review.
Mostrar más [+] Menos [-]Identification of Cationic and Anionic Surfactants by Chromatography–Mass-Spectrometry in the Microextraction–Fluorimetry Screening of Water and Food Products Texto completo
2021
Amelin, V. G. | Shogah, Z. A. Ch | Bol’shakov, D. S.
A method is proposed for the identification of surfactants by ultra-performance liquid chromatography (UPLC) with high-resolution mass spectrometry detection after screening water and food samples for the total concentration of cationic and anionic surfactants by microextraction–fluorimetry. The method is based on the use of dispersive liquid–liquid microextraction with chloroform of surfactant ion pairs with organic reagents (eosin and acridine yellow), measuring the fluorescence of the obtained adducts using a smartphone, obtaining RGB colorimetric characteristics, and determining the total surfactant concentration. The main analytical characteristics of the identification of cationic surfactants (alkylpyrdinium, alkyltrimethylammonium, alkyldimethylbenzylammonium (benzalkonium), alkylmethylethylbenzylammonium, didecyldimethylammonium, benzyldimethyl[3-(myristoylamino)propyl]ammonium, N,N-bis(3-aminopropyl)dodecylamine chlorides) and anionic surfactants (alkyl benzene sulfonates (sulfonol), alkyl sulfates, laureth sulfates, alkyl sulfonates, and sodium alkyl carboxylates) by chromatography–mass spectrometry under the selected conditions of chromatographic separation and mass spectrometric detection are found. The features of the chromatographic behavior of the surfactant polymerhomologs under the conditions of UPLC and gradient elution are considered.
Mostrar más [+] Menos [-]A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of Pseudomonas aeruginosa in Food, Juice, and Water Texto completo
2021
Jia, Fei | Bai, Xingjian | Zhang, Xiaowei | Fu, Yingchun | Li, Yanbin | Li, Xingmin | Kokini, Jozef L.
In this work, we present a low-field magnetic resonance imaging (LF-MRI) aptasensor based on the difference in magnetic behavior of two magnetic nanoparticles with diameters of 10 (MN₁₀) and 400 nm (MN₄₀₀) for the rapid detection of Pseudomonas aeruginosa (P. aeruginosa). First, specific anti-P. aeruginosa aptamers were covalently immobilized onto magnetic nanoparticles via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide chemistry for the capture of the target bacteria. In the presence of P. aeruginosa, an MN₁₀–bacteria–MN₄₀₀ (MBM) complex was formed after binding between the aptamers on magnetic nanoparticles and P. aeruginosa cells. When a magnetic field was applied, the MBM complex and free MN₄₀₀ were rapidly magnetically separated, and free MN₁₀ left in the solution worked as a T₂ (transverse relaxation time) single readout in MRI measurement. Under optimum conditions, the LF-MRI platform provides both image analysis and quantitative detection of P. aeruginosa, with a detection limit of 100 cfu/mL. The feasibility and specificity of the aptasensor were demonstrated in detecting real food, orange juice, and drinking water samples and validated using plate counting methods.
Mostrar más [+] Menos [-]Eco-friendlyultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction of nickel in water, food and tobacco samples prior to FAAS determination Texto completo
2022
An environmentally friendly, sensitive, easy and fast ultrasound-assisted ionic liquid-based dispersive liquid-liquid microextraction technique (UA-IL-DLLME) was developed to preconcentrate trace quantities of nickel Ni(II) ion in water, food and tobacco samples prior to detection by FAAS. The proposed technique based on utilisationthe of ionic liquid (IL) (1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [HMIM][FAP]) as an extraction solvent for Ni(II) ions after the complexation with quinalizarin (Quinz) at pH 6.0. The impact of different analytical parameters on the microextraction efficiency was investigated. In the range of 2.0–300 µg L⁻¹, the calibration graph was linear. Limit of detection and preconcentration factor were 0.6 µg L⁻¹ and 100. Relative standard deviation (RSD%) as precision at 50 and 100 µg L⁻¹ of Ni(II) were 2.4% and 3.6%, respectively (n = 10). The validation of the proposed procedure was verified by a test of two certified reference materials (TMDA-51.3 fortified water, TMDA-53.3 fortified water and SRM spinach leaves 1570A) applying the standard addition method. Finally, the proposed UA-IL-DLLME method was developed and applied to preconcentrate and determine of trace quantities of Ni(II) in real water, food and tobacco samples with satisfactory results.
Mostrar más [+] Menos [-]Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples Texto completo
2016
Yilmaz, Erkan | Ocsoy, Ismail | Ozdemir, Nalan | Soylak, Mustafa
Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L−1 and 8.8 μg L−1, respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples.
Mostrar más [+] Menos [-]