Refinar búsqueda
Resultados 1-6 de 6
Performance of broiler chickens given whey in the food and/or drinking water Texto completo
2005
Shariatmadari, F. | Forbes, J.M.
1. The effects on food intake and weight gain of offering broiler chickens (2 to 7 weeks of age) dry food, wet food, wet food containing whey, whey as drinking liquid and combinations of two of these were studied in 5 experiments. 2. Wet feed generally improved both weight gain and feed efficiencies significantly. Feeding whey also improved weight gain and feed conversion efficiency, but whey offered as a drinking fluid had an adverse effect on broiler performance. 3. When whey was offered both as drinking liquid and added to the food it had a deleterious effect. 4. When whey was offered from 4 or 6 weeks of age, it had a better effect than when offered from 2 weeks of age. 5. There was better performance when whey in the drinking water was diluted and/or offered on alternate days or half-days. 6. Broilers allowed to choose between wet and dry feed when water was freely available chose mostly dry feed; in the absence of drinking water they chose mostly wet food. Birds offered water and liquid whey avoided whey completely. 7. It is concluded that whey can be used in diets for broiler chickens by incorporating it in the food as long as drinking water is offered ad libitum. Whey may be offered as a drink if the food is mixed with 1.8 times its weight of water but it is better to dilute the whey with an equal volume of water whether it is added to food or given as drink. Good results can also be obtained when undiluted whey is offered alternately with water, either in half-day or full-day periods.
Mostrar más [+] Menos [-]High-fibre pelleted rations decrease water intake but do not improve physiological indexes of welfare in food-restricted female broiler breeders Texto completo
2006
Hocking, P.M.
1. A 3 x 2 factorial experiment was conducted with three diets and two lines of broiler breeder females to evaluate the contribution of low-energy rations for improving the welfare of feed-restricted birds during rearing. Experimental diets were fed from 6 to 16 weeks of age and were created by diluting a conventional grower (Control) ration containing 11.0 MJ ME/kg with 200 (8.8 MJ ME/kg) or 400 (6.6 MJ ME/kg) g oat hulls/kg using Optimoist to facilitate the pelleting process. Welfare was assessed by changes in behaviour and physiological variables at 8, 12 and 16 weeks of age. Birds were fed restricted quantities of feed to meet recommended body weight targets. 2. There was a decrease in the proportion of observations of drinking and an increase of preening in birds fed on the two experimental diets compared with the control. There was a linear decrease in litter moisture and the number of litter changes with increasing diet dilution, and water intake at 12 weeks was higher in the control than in the two experimental diets. There were no changes in physiological indexes of welfare (heterophil-lymphocyte ratio, plasma corticosterone and antibody responses) associated with the dietary treatments. 3. There were no important differences in the growth, behaviour or physiological responses to dietary treatment between the two lines of broiler breeders. Changes with age were similar to those reported in other experiments. 4. It was concluded that low-energy pelleted diets would improve litter conditions but not improve indexes of welfare in feed-restricted broiler breeders.
Mostrar más [+] Menos [-]Evaluation of dairy food processing wash water solids as a protein source. III. Nitrogen utilization by heifers fed medium-concentrate diets
1991
May, T. | Williams, J.E. | Caton, J.S.
Eight multicannulated heifers (average BW 415 +/- 34 kg) were used in a replicated 4 X 4 Latin square to evaluate fluid milk processing wash water solids (WWS) as a dietary N source. Heifers were fed corn/cottonseed hull-based diets containing soybean meal (control, 0% WWS N) or WWS replacing soybean meal at 33, 67, or 100% of supplemental dietary N. Total tract and ruminal DM and OM digestibilities decreased linearly or cubically (P < .05) as dietary WWS N increased. Total ruminal VFA concentration (P < .05) and propionic acid molar proportion (P < .10) were greater in heifers fed 0 vs 100% WWS N. Heifers fed 0% WWS N had the greatest (P < .05) ruminal ammonia concentration at all sampling times. Dietary WWS did not affect (P > .10) ruminal pH, fluid dilution rate, fluid flow, fluid volume, or turnover time. Total tract N digestibility decreased quadratically (P < .10) with increasing WWS N in the diet. Supplemental WWS N did not affect (P > .10) flow of duodenal ammonia N or bacterial N, or efficiency of microbial N synthesis. Diets containing WWS N resulted in a cubic increase (P < .10) in duodenal flow of essential amino acids compared with 0% WWS N; however, there were no differences in small intestinal amino acid disappearance. Data indicate that WWS can replace 33% of the soybean meal N in a corn/cottonseed hull-based diet without decreasing ruminal fermentation, fluid digesta kinetics, microbial efficiency, or small intestinal amino acid utilization.
Mostrar más [+] Menos [-]Evaluation of dairy food processing wash water solids as a protein source. II. Microbial protein synthesis, duodenal nitrogen flow, and small intestinal amino acid disappearance
1991
Caton, J.S. | Williams, J.E. | May, T. | Belyea, R.L. | Beaver, E.E. | Tumbleson, M.E.
Twelve ruminally, duodenally, and ileally-cannulated Hereford heifers (average initial BW 313 +/- 20 kg) were used in a replicated experiment to evaluate dairy food processing wash water solids (WWS) as a protein source. Heifers were fed 2.8 kg of chopped (7.6 cm) hay and one of three supplements (1.5 kg/d, DM basis). Supplements were formulated to be similar in energy and contained 1.0 (control), 23.2 (WWS), and 21.6% (soybean meal; SBM) CP on an OM basis. Total N and nonammonia N entering the duodenum (g/d) were greater (P <. 10) for heifers fed WWS and SBM supplements than for controls. Bacterial N flow (g/d) at the duodenum was less (P < .10) for controls (43.9) than for WWS- (63.9) and SBM- (69.9) supplemented heifers. Feed escape N (g/d) was greater (P < .10) for WWS-fed heifers than for those fed SBM (32.1 vs 20.7 g/d, respectively). Total tract N digestion (g/d) was greatest (P < .10) for SBM, intermediate for WWS, and least for control heifers. Microbial protein synthesis (g/kg of OM intake) was enhanced (P < .10) by WWS and SBM supplementation, but efficiency of synthesis (g/kg of OM fermented) did not differ among treatments. Essential amino acid (AA) disappearance in the small intestine (g/d) was less (P < .10) for control than for the other two treatments. Nonessential AA disappearance was greatest (P < .10) for the WWS and least (P < .10) for the control treatment. Based on our short-term feeding data, WWS can be used as a protein source for ruminants, but N availability of WWS seems less than that of soybean meal.
Mostrar más [+] Menos [-]A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction Texto completo
2018
Wang, Jiayi | Niu, Yiming | Zhang, Chi | Chen, Yiqiang
A new micro-plate colorimetric assay was developed for rapid determination of zinc in animal feed, pet food and drinking water. Zinc ion was extracted from sample by trichloroacetic acid and then reacted with 2-(5-Bromo-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS) to form a Zn-PAPS complex to be detected by a micro-plate reader at 552 nm. An ion masking formula including salicylaldoxime, deferoxamine and sodium citrate were screened and applied to exclude the interference from other heavy metals and a partitioning correction approach was proposed to eliminate the matrix effect derived from feed sample. The entire procedure can be completed within 40 min and the detection range was 0.038–8.0 μg mL−1 zinc in buffer solution. Moreover, the analysis in real samples revealed the consistency of results by this assay and those by atomic absorption spectrometry analysis. These features highlighted the possibility for this proposed assay to be used for rapid determination of zinc in complex samples.
Mostrar más [+] Menos [-]Evaluation of dairy food processing wash water solids as a protein source. I. Forage intake, animal performance, ruminal fermentation, and site of digestion in heifers fed medium-quality hay
1991
Caton, J.S. | Williams, J.E. | May, T. | Beaver, E.E. | Belyea, R.L.
Twelve ruminally, duodenally, and ileally cannulated (average initial BW 313 +/- 20 kg) and 27 intact Hereford heifers (average initial BW 256 +/- 17 kg) were used in two experiments to evaluate dairy food wash water solids (WWS) as a protein source in medium-quality hay diets. Heifers received a basal diet of orchardgrass hay (7.4% CP) and were assigned to one of three supplement treatments: control (C;.9% CP), WWS (18.8% CP)-, and soybean meal (SBM 19.1% Cp)-based supplements (fed at 1.5 kg of DM/d). Supplements were formulated to have similar ME concentrations. Ruminal ammonia concentrations were greater (P <.10) for WWS- and SBM-supplemented heifers than for C heifers at most sampling times. Moreover, WWS and SBM increased (P < .10) total VFA (mM) and acetate (mol/100 mol) and lowered propionate (mol/100 mol) at several sampling times. Ruminal fluid volume (liters) was unchanged (P > .10) by treatment; however, fluid dilution and flow rate (liters/h) were less (P < .10) in C heifers than in heifers fed SBM or WWS supplements. Wash water solids and SBM supplementation increased (P < .10) OM, NDF, and ADF digestibilities compared with C heifers. Feeding WWS and SBM supplements increased BW at 84 d (P < .10) compared with C-supplemented heifers. Forage intake at 54 and 84 d by heifers supplemented with SBM or WWS was greater (P < .10) than by C heifers. Control-supplemented heifers had the least, WWS intermediate, and SBM the greatest ADG at 84 d (P < .10; .14 vs .35 vs .48 kg/d, respectively). These data indicate that WWS may be used as a protein source without serious adverse effects in heifers consuming medium-quality hay for 84 d.
Mostrar más [+] Menos [-]