Refinar búsqueda
Resultados 1-3 de 3
Reduction of Water Vapor Permeability in Food Multilayer Biopackaging by Epitaxial Crystallization of Beeswax Texto completo
2021
Cruces, Florencia | García, María Guadalupe | Ochoa, Nelio Ariel
In this paper, multilayer pectin-beeswax/colophony-pectin (P-BC-P) films including different proportions of beeswax/colophony mixtures were prepared in order to reduce the water vapor permeability. FTIR, XRD, DSC, polarized light microscopy (PLM), and water vapor permeation assays were performed. Characterization techniques showed (i) polar interactions between beeswax and colophony at the amorphous phase, (ii) changes in beeswax crystalline phase from sponge-like to needle-like structure, and (iii) formation of a eutectic mixture at BC3 70/30 ratio which guides the epitaxial crystallization of beeswax. Pure pectin films showed low resistance to the water vapor permeation (361 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹), while multilayer films showed major control over the transport process. P-BC3-P showed one of the lowest water vapor permeability (WVP) values (56 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹) and the closest WVP value to that of polyethylene films (LDPE 5.8 × 10⁻¹³ g m m⁻² s⁻¹ Pa⁻¹). This result was attributed to the ordered crystalline structure reached by the epitaxial crystallization of beeswax within the hydrophobic phase.
Mostrar más [+] Menos [-]Novel composite foam made from starch and water hyacinth with beeswax coating for food packaging applications Texto completo
2020
Chaireh, Sukaree | Ngasatool, Pawarisa | Kaewtatip, Kaewta
A novel composite foam was prepared from native cassava starch and water hyacinth (WH) by baking in a hot mold. The effects of WH powder content (0, 3, 5, 7 or 10 wt%, dry starch basis) on the properties of the starch foam were investigated. A starch foam formulation with 5 wt% WH powder exhibited the highest flexural stress at maximum load (3.42 MPa), the highest flexural strain (extension) at maximum load (3.52%), the highest modulus (232.00 MPa), the lowest moisture content (6.77%) and the most uniform cell size distribution (0.44 ± 0.09 mm). Moreover, mechanical properties of starch foam with 5 wt% WH powder were better than the same properties of some commercial foams. After being coated with beeswax, the starch foams retained their shape after immersion in distilled water and their water solubility was significantly reduced. Results indicated that a starch foam/5 wt% WH composite with beeswax coating was a biodegradable foam that could possibly replace commercial non-degradable foam.
Mostrar más [+] Menos [-]Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions Texto completo
2022
Zhang, Yun | Xie, Youfa | Liu, Hang | McClements, David Julian | Cheng, Ce | Zou, Liqiang | Liu, Wenjun | Liu, Wei
Polyglycerol polyricinoleate (PGPR) was used as the oil-soluble surfactant and beeswax was used as the oil phase to formulate a water-in-oil (W/O) high internal phase emulsions (HIPEs) for the encapsulation and protection of probiotics. The physicochemical properties of the W/O HIPEs and the survival of the encapsulated probiotics when exposed to acidic conditions and in vitro digestion were investigated. The viability of the probiotics decreased slightly when exposed to high-speed shearing. The rheological analysis, microstructural images, physicochemical stability showed that the W/O HIPEs remained relatively stable. The survival of the probiotics loaded in the SK-HIPEs (prepared with skim milk) was much higher than in the NS-HIPEs (prepared with normal saline) during storage at 4 °C. An in vitro gastrointestinal model showed that encapsulation of the probiotics enhanced their survival. This study provides useful insights into the utilization of W/O HIPEs to improve the efficacy of probiotics in the food industry.
Mostrar más [+] Menos [-]