Refinar búsqueda
Resultados 1-8 de 8
Food-waste enables carboxylated gold nanoparticles to completely abat hexavalent chromium in drinking water Texto completo
2022
Maddaloni, Marina | Alessandri, Ivano | Vassalini, Irene
In this work we demonstrate that the synergistic combination of organic molecules extracted from food waste can empower different types of carboxylated gold nanoparticles (Au NPs) in removal of Cr(VI) species from both milliQ and real water solutions. In particular, chitosan extracted from shrimp’s shell and dissolved in an acidic active medium based on a 1:3 M mixture of ascorbic and citric acid allows citrate-capped Au NPs to improve their abatment efficiency from 18.4 to > 99% in milliQ and 80.6% in drinking water. When citrates are exchanged with 3-mercaptopropionic or 11-mercaptoundecanoic acids, the efficiency reaches 100% in both milliQ and drinking water. 11-mercaptoundecanoic acid is found to be the best capping agent in terms of efficiency and stability. Crossing of cyclic voltammetry and UV–Vis data enabled to define the main role of each individual component in abatment of Cr(VI). This study further advances research on the rational design of hybrid nanoparticle/polymer systems for environmental remediation, inspired by criteria of circular economy and environmental sustainability.
Mostrar más [+] Menos [-]Biosorption of Multifold Toxic Heavy Metal Ions from Aqueous Water onto Food Residue Eggshell Membrane Functionalized with Ammonium Thioglycolate Texto completo
2013
Wang, Sha | Wei, Minghong | Huang, Yuming
A new biosorbent material from eggshell membrane was synthesized through thiol functionalization, which is based on the reduction of disulfide bonds in eggshell membrane by ammonium thioglycolate. The thiol-functionalized eggshell membrane was characterized, and its application as an adsorbent for removal of Cr(VI), Hg(II), Cu(II), Pb(II), Cd(II), and Ag(I) from aqueous water has been investigated. The experimental results revealed that the adsorption abilities of the thiol-functionalized eggshell membrane toward Cr(VI), Hg(II), Cu(II), Pb(II), Cd(II), and Ag(I) improved 1.6-, 5.5-, 7.7-, 12.4-, 12.7-, and 21.1-fold, respectively, compared with that of the eggshell membrane control. The adsorption mechanism and adsorption performance, including the adsorption capacity and the kinetics of the thiol-functionalized eggshell membrane for the target heavy metals, were investigated. The effects of solution pH, coexisting substances, and natural water matrices were studied. The thiol-functionalized eggshell membrane can be used as column packing to fabricate a column for real wastewater purification.
Mostrar más [+] Menos [-]Ultra trace quantification of chromium(VI) in food and water samples by highly sensitive catalytic adsorptive stripping voltammetry with rubeanic acid Texto completo
2012
Abbasi, Shahryar | Bahiraei, Atousa
A simple and highly selective and sensitive catalytic adsorptive stripping voltammetric procedure for determination of ultra trace levels of chromium(VI) on hanging mercury drop electrode is reported. The method is based on the adsorptive preconcentration of the Cr(III)–dithiooxamide (rubeanic acid) complex and the utilization of the catalytic reaction in the presence of nitrate. At optimized conditions the calibration graph is linear from 0.01 to 6ng/ml and detection limit is 0.002ng/ml for accumulation time of 50s. The interference of some common ions was studied and this method has been applied to the determination of chromium in food and waste water samples with satisfactory results.
Mostrar más [+] Menos [-]A new coprecipitation method without carrier element for separation and preconcentration of some metal ions at trace levels in water and food samples Texto completo
2016
Gouda, Ayman A.
A new simple and sensitive preconcentration, separation and environmentally friendly method based on carrier element free coprecipitation (CEFC) was developed using 4-(2-hydroxybenzylideneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (APSAL) as a new organic co-precipitant to precipitate Cr³⁺, Cu²⁺, Fe³⁺, Pb²⁺ and Zn²⁺ ions from water and food samples. The levels of the studied elements were detected by flame atomic absorption spectrometry (FAAS). The impact of several analytical parameters, such as pH, sample volume and coprecipitant amount as well as centrifugation rate and time was investigated to recover the examined metal ions. The influence of matrix ions was also tested, and no interferences were observed. The recovery values of the analyte ions were calculated and found to be in the range of 95–101%. The detection limits, corresponding to three times the standard deviation of the blank (N=10), were found to be in the range of 0.2–1.2μgL⁻¹. The relative standard deviation (RSD) was calculated to evaluate the precision of the proposed method and was found to be ≤5.0%. The calculated preconcentration factor was 100. The proposed method was successfully applied to separate and preconcentrate trace amounts of ions in several water and food samples. To confirm the accuracy and validate the proposed method, certified reference materials were analyzed with satisfactory results.
Mostrar más [+] Menos [-]Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested Texto completo
2018
Chen, Lian | Zhou, Shenglu | Shi, Yaxing | Wang, Chunhui | Li, Baojie | Li, Yan | Wu, Shaohua
Environmental pollution by heavy metals resulting from rapid economic development is a major concern. Soil, water, wheat, and rice samples were collected from the Lihe River Watershed in the Taihu Region (east China). In this study area, many types of industrial plants, including ceramics factories, plants working with refractory materials, and chemical plants are densely distributed and cause serious heavy metal pollution. In addition, well-developed transportation and agricultural activities are also important sources of heavy metals. Thus, the concentrations of selected heavy metals including cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in the samples were analyzed to evaluate their potential integral risk (IR) to the health of the local population. Accordingly, the spatial distribution pattern of the IR values was determined in the study. The soil in the study area showed heavy Cd pollution, whereas the pollution by other elements was relatively slight. When the proportions of grain samples in which the concentrations exceeded the tolerance limits were examined, the grains were primarily contaminated with Pb, Ni, Cd, and Zn; and less contaminated with Cu and Cr. The drinking water of the local inhabitants was safe. The average IR value was 3.53 for adults and 3.91 for children, indicating that both adults and children may experience adverse health effects. The spatial distribution pattern of the IR values among the exposed populations in the study area showed high values in the eastern and middle parts, with maximum values >5, and low values in the western part, with minimum values <2. This is consistent with the distributions of the industries and the population. The study may provide a basis for comparison to other regions both in China and worldwide.
Mostrar más [+] Menos [-]Phallus impudicus loaded with γ-Fe2O3 as solid phase bioextractor for the preconcentrations of Zn(II) and Cr(III) from water and food samples Texto completo
2020
We investigated the application of fungus Phallus impudicus loaded γ-Fe₂O₃ nanoparticles as a biosorbent for magnetic solid phase extractions of trace levels of Zn(II) and Cr(III) ions from natural samples before their measurements by inductively coupled plasma optical emission spectrometry. The characterization of magnetized P. impudicus was performed using the scanning electron microscope, the energy dispersive X-ray and Fourier transform infrared spectroscopy. Important experimental factors were investigated. The experimental results fitted well to the Langmuir adsorption model and pseudo-second order kinetic model. Limit of detections of targeted ions by magnetic solid phase extraction method based on use of P. impudicus were found as 10.5 ngL⁻¹ and 12.6 ngL⁻¹ respectively for Cr(III) and Zn(II). The sorption capacities of the biosorbent were 22.8 mgg⁻¹ for Cr(III) and 25.6 mgg⁻¹ for Zn(II). The preconcentration factors were achieved as 100 for both of ions. RSDs for inter- and intraday precisions were found as lower than 2.0% and 2.1% respectively for both of targeted ions. The accuracy of the recommended process was tested by recovery measurements on the certificated reference materials and successfully applied for quantification recoveries of Cr(III) and Zn(II) ions from water and food samples.
Mostrar más [+] Menos [-]Bioaccumulation of metals in common carp (Cyprinus carpio L.) from water bodies of Anatolia (Turkey): a review with implications for fisheries and human food consumption Texto completo
2016
Vilizzi, Lorenzo | Tarkan, Ali Serhan
Although fish is widely consumed by humans for its nutritional properties, accumulation of heavy metals can pose serious health hazards. Widespread common carp Cyprinus carpio is cultured worldwide and represents an economically important species for fisheries in several countries. These include Turkey, where C. carpio often makes for a large part of the sales of the locally marketed fish and also for a traditional dish. This study provides a review of bioaccumulation of metals in tissues of C. carpio from water bodies of Anatolia and also includes reference to worldwide studies. From 42 water bodies across the region, 27 metals in total were studied, of which Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn were the most widely analysed, mainly in the muscle, liver and gill tissues. Amongst the potentially toxic metals, Cd, Cr and Pb occurred in several water bodies at concentrations not only above maximum allowed limits but also higher relative to other water bodies worldwide, even though As, Hg and Ni were also sometimes present at potentially hazardous concentrations. The essential metals Cu, Fe, Mn, Se and Zn were detected at various concentrations, with the latter two occasionally above limit. All water bodies flagged as having especially critical (i.e. above limit) concentrations of toxic metals supported C. carpio fisheries from highly populated regions, raising concern about food safety and calling for preventative measures. Given the significantly lower bioaccumulation levels in the muscle relative to the liver and gill tissues, it is suggested that consumption of C. carpio as fillets may be safer than after processing into e.g. meat balls and sausages. The limits of 1.0 μg/g for Cr and 1.15 μg/g for Se, currently lacking from the Turkish food safety legislation, are proposed, and it is suggested that a similar meta-analytical approach as adopted in this study may benefit other countries where C. carpio represents an important fisheries resource.
Mostrar más [+] Menos [-]Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples Texto completo
2015
Mendil, Durali | Karataş, Murat | Tuzen, Mustafa
In this study, Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) were determined in some food and water samples after development 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) coprecipitation procedure using flame atomic absorption spectrometry (FAAS). Effects of some analytical parameter including pH, sample volume, reagent amount, centrifuge rate and time, etc. on the presented coprecipitation system were studied for the quantitative recoveries of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions. The influences of matrix ions were examined. The recovery values for analyte ions were calculated ⩾95%. The relative standard deviation was found 8.0% and the preconcentration factor was found as 25 for all analyte ions. The detection limits (k=3, N=21) were found to be as 0.80μgL−1 Cu(II), 3.08μgL−1 Pb(II), 0.28μgL−1 Zn(II), 0.91μgL−1 Fe(III) and 1.82μgL−1 Cr(III). NIST SRM 1515 Apple leaves and GBW-07605 Tea certified reference materials were used to confirm the accuracy of the method. The simultaneous coprecipitation method was applied to various water and microwave digested food samples.
Mostrar más [+] Menos [-]