Refinar búsqueda
Resultados 1-6 de 6
Punjab’s Water Woes and India’s Food Security Texto completo
2015
Khush, Gurdev S.
Ground water tables in Punjab are declining at alarming rates in most districts of Punjab. One of the major causes of declining water tables is the increased cropping intensity. Whereas cropping intensity in Punjab was only 120% until about 50 years ago, it is now 190%. With one crop per year, a balance was maintained between water extraction and aquifer recharge. With two crops per year, this balance has been altered. Homogenization of crops in the state has also exacerbated the problem. Even more serious threat to nation’s agriculture is climate change. Himalayan glaciers, which are water towers for our rivers, are retreating. This will reduce the water flow in our rivers. While the climate-change impact on our water availability is several years away, we must address immediate problem of declining water tables in the state. Suggested interventions include crop diversification, precision agriculture, including water saving technologies, and developing crop varieties with improved water-use efficiency.
Mostrar más [+] Menos [-]New solutions to reduce water and energy consumption in crop production: A water–energy–food nexus perspective Texto completo
2020
Scardigno, Alessandra
Recent research studies and policies about innovative solutions to reduce water and energy consumption in food production are briefly reviewed. Options to increase water use efficiency and productivity include soil mulching, drip irrigation, deficit irrigation, and precision agriculture. As for the energy–water nexus, attention is focused on energy audits of water distribution networks; improving of system performance –– network sectoring, use of variable speed drives, critical points control, electricity tariff — and reduction of wastewater treatment’s energy use. At a larger scale, other solutions emerge: diversification and rotation of crops, cultivation of drought-resistant crops, and optimization process of the spatial distribution of cropping patterns. The rebound effect that can be associated to these options is also considered.
Mostrar más [+] Menos [-]Influence of drying conditions, food composition, and water activity on the thermal resistance of Salmonella enterica Texto completo
2021
Salmonella contamination of low-water activity (aw) foods poses a serious concern worldwide. The present study was conducted to assess the effects of drying conditions, food composition, and water activity on the desiccation tolerance and thermal resistance of S. Enteritidis FUA1946, S. Senftenberg ATCC43845 and S. Typhimurium ATCC13311 in pet food, binder formulation, and skim milk powder. The samples were wet inoculated with the individual Salmonella strains and were equilibrated to aw 0.33 and 0.75, followed by an isothermal treatment at 70 °C. The thermal inactivation data was fitted to the Weibull model. Irrespective of the aw, food composition and physical structure of the selected foods, strain S. Enteritidis FUA1946 displayed the highest desiccation and thermal resistance, followed by S. Senftenberg ATCC43845 and S. Typhimurium ATCC13311. The food matrix and strain type significantly (p < 0.05) influenced the thermal resistance of microorganisms in foods along with aw change during thermal treatments. To further study the effect of food composition, an additional set of experiments using dry inoculation of the resistant Salmonella strain in the low-aw foods was designed. Significant (p < 0.05) matrix-dependent interaction on Salmonella reduction was observed. The water adsorption isotherms of selected low-aw foods were measured at 20 and 70 °C to relate the thermal inactivation kinetics with the change in the aw. The characterization of thermal resistance of the Salmonella serovars in low-aw products with different compositions and aw in this study may be used for the validation of thermal challenge studies.
Mostrar más [+] Menos [-]Drought Tolerance and Water Use of Cereal Crops: A Focus on Sorghum as a Food Security Crop in Sub‐Saharan Africa Texto completo
2017
Hadebe, S. T. | Modi, A. T. | Mabhaudhi, T.
Sub‐Saharan Africa (SSA) faces twin challenges of water stress and food insecurity – challenges that are already pressing and are projected to grow. Sub‐Saharan Africa comprises 43 % arid and semi‐arid area, which is projected to increase due to climate change. Small‐scale, rainfed agriculture is the main livelihood source in arid and semi‐arid areas of SSA. Because rainfed agriculture constitutes more than 95 % of agricultural land use, water scarcity is a major limitation to production. Crop production, specifically staple cereal crop production, will have to adapt to water scarcity and improved water productivity (output per water input) to meet food requirements. We propose inclusion and promotion of drought‐tolerant cereal crops in arid and semi‐arid agro‐ecological zones of SSA where water scarcity is a major limitation to cereal production. Sorghum uniquely fits production in such regions, due to high and stable water‐use efficiency, drought and heat tolerance, high germplasm variability, comparative nutritional value and existing food value chain in SSA. However, sorghum is socio‐economically and geographically underutilized in parts of SSA. Sorghum inclusion and/or promotion in arid and semi‐arid areas of SSA, especially among subsistence farmers, will improve water productivity and food security.
Mostrar más [+] Menos [-]Can raingardens produce food and retain stormwater? Effects of substrates and stormwater application method on plant water use, stormwater retention and yield Texto completo
2017
Richards, Paul J. | Williams, Nicholas S.G. | Fletcher, Tim D. | Farrell, Claire
Raingardens capture and filter urban stormwater using sandy soils and drought-tolerant plants. An emerging question is whether raingardens can also be used as vegetable gardens, potentially increasing their popularity and implementation. A successful vegetable raingarden will need to both retain stormwater and produce vegetables, despite potential water deficits between rainfall events. To determine whether raingardens can provide this dual functionality, we undertook a greenhouse pot experiment using two different substrates (loamy sand raingarden substrate and potting mix typical of containerised vegetable growing) and two methods of stormwater application (‘sub-surface’ and ‘surface’ watering) with the water quantity at each application determined by average Melbourne summer rainfall. Overall, potting mix produced bigger plants (biomass and leaf area) and greater yield than did the loamy sand. Yield effects were variable: tomato yield was unaffected by treatment, bean yield was greatest in potting mix, beetroot yield was greatest with sub-surface watering and parsley yield was greatest with surface watering. Bigger plants also had greater transpiration, which meant that stormwater retention was greatest for parsley and tomato plants growing in potting mix with surface watering. Although, a raingarden with potting mix and surface application of stormwater was optimal for producing food and retaining stormwater under our rainfall regime, potting mix could be problematic due to higher nutrient leaching and breakdown over time. Therefore, we recommend using a mix of loamy sand and potting mix. However, the choice of substrate and watering treatment require trade-offs between yield, stormwater retention and potential implications for water quality and long-term stability of hydraulic properties.
Mostrar más [+] Menos [-]Experiment station work, XXII Texto completo
1903