Refinar búsqueda
Resultados 1-9 de 9
Electrolyzed Water and Its Application in the Food Industry
2008
Hricova, D. | Stephan, R. | Zweifel, C.
Electrolyzed water (EW) is gaining popularity as a sanitizer in the food industries of many countries. By electrolysis, a dilute sodium chloride solution dissociates into acidic electrolyzed water (AEW), which has a pH of 2 to 3, an oxidationreduction potential of >1,100 mV, and an active chlorine content of 10 to 90 ppm, and basic electrolyzed water (BEW), which has a pH of 10 to 13 and an oxidation-reduction potential of -800 to -900 mV. Vegetative cells of various bacteria in suspension were generally reduced by >6.0 log CFU/ml when AEW was used. However, AEW is a less effective bactericide on utensils, surfaces, and food products because of factors such as surface type and the presence of organic matter. Reductions of bacteria on surfaces and utensils or vegetables and fruits mainly ranged from about 2.0 to 6.0 or 1.0 to 3.5 orders of magnitude, respectively. Higher reductions were obtained for tomatoes. For chicken carcasses, pork, and fish, reductions ranged from about 0.8 to 3.0, 1.0 to 1.8, and 0.4 to 2.8 orders of magnitude, respectively. Considerable reductions were achieved with AEW on eggs. On some food commodities, treatment with BEW followed by AEW produced higher reductions than did treatment with AEW only. EW technology deserves consideration when discussing industrial sanitization of equipment and decontamination of food products. Nevertheless, decontamination treatments for food products always should be considered part of an integral food safety system. Such treatments cannot replace strict adherence to good manufacturing and hygiene practices.
Mostrar más [+] Menos [-]Removal of Shewanella putrefaciens Biofilm by acidic electrolyzed water on food contact surfaces Texto completo
2021
Yan, Jun | Xie, Jing
Shewanella putrefaciens is an important specific spoilage organism (SSO) in seafood under low-temperature storage and can form biofilms on seafood processing-related contact surfaces, which exacerbates seafood spoilage and causes food safety problems. The characterization of and dynamic change in biofilms formed by Shewanella putrefaciens on three seafood processing-related contact surfaces were investigated in this study. An effective strategy to eliminate mature biofilms by acidic electrolysis water (AEW) was provided. Shewanella putrefaciens can form biofilms on glass, stainless steel and polystyrene, which are closely connected with surface properties such as hydrophilicity/hydrophobicity and surface roughness. AEW can be an excellent choice to clean mature biofilms formed by S. putrefaciens. AEW at a concentration of 3 g/L can remove almost all biofilms on the three common food contact materials tested. There is a bactericidal effect on the biofilm, reducing the possibility of secondary contamination. This study will contribute to promoting the application of AEW for controlling biofilms during seafood processing.
Mostrar más [+] Menos [-]New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications Texto completo
2022
Kumar, Ankit | Kaur, Ramandeep | Kumar, Vikas | Kumar, Satish | Gehlot, Rakesh | Aggarwal, Poonam
Nowadays people demand for healthy, convenient, and wholesome foods. Double emulsions have attracted widespread attention in the food industry owing to their capability of encapsulating the compounds, fabricating polymersomes, and acting as fat replacers or sweetness enhancers in different foods. In this review, properties and their importance in the fabrication of double emulsions along with their advantages and disadvantages are discussed. In the lateral part of the manuscript, the instability mechanism and the effect of different variables on the stability of the double emulsions are reviewed. Finally, this review provides a glimpse of the recent food application of W/O/W double emulsions. Double emulsions have a better profile on the encapsulation of nutrients along with maintenance of the organoleptic quality of the food. The conventional emulsification techniques result in low encapsulation efficiency and poor monodispersity. With recent developments, different novel methods for the fabrication of double-emulsions have been developed such as glass capillary microfluidic devices, membrane emulsification, phase inversion techniques, etc. However, findings thus far indicate that the long-term stability of double emulsions remains a crucial issue that limits their wide application in food formulations. Therefore, further research should focus on finding innovative approaches to improve the stability of double emulsions.
Mostrar más [+] Menos [-]Assessing the safety of co-exposure to food packaging migrants in food and water using the maximum cumulative ratio and an established decision tree Texto completo
2014
Price, Paul | Zaleski, Rosemary | Hollnagel, Heli | Ketelslegers, Hans | Han, Xianglu
Food contact materials can release low levels of multiple chemicals (migrants) into foods and beverages, to which individuals can be exposed through food consumption. This paper investigates the potential for non-carcinogenic effects from exposure to multiple migrants using the Cefic Mixtures Ad hoc Team (MIAT) decision tree. The purpose of the assessment is to demonstrate how the decision tree can be applied to concurrent exposures to multiple migrants using either hazard or structural data on the specific components, i.e. based on the acceptable daily intake (ADI) or the threshold of toxicological concern. The tree was used to assess risks from co-exposure to migrants reported in a study on non-intentionally added substances (NIAS) eluting from food contact-grade plastic and two studies of water bottles: one on organic compounds and the other on ionic forms of various elements. The MIAT decision tree assigns co-exposures to different risk management groups (I, II, IIIA and IIIB) based on the hazard index, and the maximum cumulative ratio (MCR). The predicted co-exposures for all examples fell into Group II (low toxicological concern) and had MCR values of 1.3 and 2.4 (indicating that one or two components drove the majority of the mixture’s toxicity). MCR values from the study of inorganic ions (126 mixtures) ranged from 1.1 to 3.8 for glass and from 1.1 to 5.0 for plastic containers. The MCR values indicated that a single compound drove toxicity in 58% of the mixtures. MCR values also declined with increases in the hazard index for the screening assessments of exposure (suggesting fewer substances contributed as risk potential increased). Overall, it can be concluded that the data on co-exposure to migrants evaluated in these case studies are of low toxicological concern and the safety assessment approach described in this paper was shown to be a helpful screening tool.
Mostrar más [+] Menos [-]Escherichia coli isolated from food sources and irrigation water: A potential risk for causing intestinal dysfunction? Texto completo
2019
Aijuka, Matthew | Santiago, Araceli E. | Girón, Jorge A. | Nataro, James P. | Buys, Elna M.
We have previously shown that diarrheagenic Escherichia coli (DEC) and non-DEC are prevalent in food sources and irrigation water in South Africa. Recent data suggest that an increased relative abundance of faecal Enterobacteriaceae is associated with poorer health outcomes among children in developing countries. Thus, exposure to non-DEC from environmental sources may incur adverse effects, although the mechanisms underlying these effects remain obscure. To further elucidate this phenomenon, we assayed non-DEC strains from environmental sources in South Africa for phenotypes that may be associated with intestinal dysfunction (ID). DEC strains were also used. The strains had previously been isolated from Producer Distributor Bulk Milk (PDBM), irrigated lettuce, street vendor coleslaw and irrigation water.In-vitro assays identified; biofilm formation (n = 38), extracellular polymeric substance (EPS) formation (n = 38), cytotoxic activity (n = 10), disruption of tight junctions and induction of Interleukin 8 (IL-8) on polarized T-84 cells (n = 20). The number of strains tested for each assay differed, depending on prior molecular and phenotypic characterization that signalled potential pathogenicity in-vitro. Subsequently, all strains having data points for all analyses were used to compute Principal Component Analysis (PCA) plot curves to infer potential associations amongst test strains and a standard DEC pathogenic strain (042).Biofilm formation on glass coverslips after strains were grown in nutrient-rich media (LB and DMEM-F12 + 0.5% D-Mannose) at 37 °C varied based on pathotype (DEC and non-DEC) and source of isolation (food, irrigation water, clinical) suggesting that pathotype and source isolation influence persistence within a defined environmental niche. Additionally, DEC isolated from irrigated lettuce had a significantly higher (p ≤ 0.05) propensity for biofilm formation in both media compared to all strains including DEC standard controls. This suggested the propensity for irrigated lettuce as a potential source of persistent pathogenic strains. Furthermore, all strains were able to form EPS suggesting the ability to form mature biofilms under conditions relevant for food processing (20–25 °C). Of the (60%, 6 out of 10) strains that showed cytotoxic activity, most (83%, 5 out of 6 strains) were non-DEC isolated from food sources many of which are consumed with minimal processing.Mean percentage reduction in initial TEER (a measure of intestinal disruption), did not significantly differ (p = 0.05) in all test strains from that observed in the standard DEC. Additionally, IL-8 induction from strains isolated from PDBM (139 pg/mL), irrigation water (231.93 pg/mL) and irrigated lettuce (152.98 pg/mL) was significantly higher (p ≤ 0.05) than in the commensal strain aafa. PCA categorized strains based on sources of isolation showed potential for use in source tracking especially when comparing many strains from various environmental sources. We show that non-DEC strains along the food chain possess characteristics that may lead to ID. Further investigations using a larger collection of strains may provide a clearer link to these reported observations that could be associated with the high diarrheal disease burden within the country, especially among infants.
Mostrar más [+] Menos [-]Improvement of Freeze-Dried Lactobacillus Plantarum Survival Using Water Extracts and Crude Fibers from Food Crops Texto completo
2013
Hongpattarakere, Tipparat | Rattanaubon, Patcharawan | Buntin, Nirunya
A synbiotic product of combined Lactobacillus plantarum TISTR 875 with water extracts and crude fibers from corn, mungbean, and soybean was formulated to investigate the survival of L. plantarum during freeze-drying and storage. The impacts of those water extracts and crude fibers on probiotic survival were determined in both a cultural medium and a freeze-drying medium. L. plantarum cultivated in de Man, Rogosa, and Sharpe (MRS) broth containing 2 % of water extract from soybean with 2 % mungbean fiber showed only 0.11 log CFU/ml cell reduction. The survival of L. plantarum harvested at the late log phase, mid stationary, phase and late stationary phase did not show statistical significance (P > 0.05), whereas an initial pH of 6.5 and growth temperature of 37 °C showed greater impact (P < 0.05). The addition of corn extract to the freeze-drying medium as a cryoprotectant had a similar effect on L. plantarum survival as sucrose, but it was better (P < 0.05) than fructo-oligosaccharide and exopolysaccharides from Weissella cibaria A2, soybean extract, mungbean extract, soybean, corn, and mungbean fibers. A protective coating of corn extract was revealed and observed using scanning electron microscopy. The freeze-dried L. plantarum, cultivated in MRS broth containing soybean extract and mungbean fiber with corn extract as a cryoprotectant, retained high viability of 7.21 and 6.88 log CFU/ml after 8-week storage in a vacuum-packed aluminum foil-laminated polyethylene sachet and a nitrogen-flushed glass vial, respectively. ©Springer Science+Business Media New York 2012.
Mostrar más [+] Menos [-]Environmental assessment of food and beverage under a NEXUS Water-Energy-Climate approach: Application to the spirit drinks Texto completo
2020
Leivas, R. | Laso, J. | Abejón, R. | Margallo, M. | Aldaco, R.
The energy-water nexus is a concept widely established but rarely applied to product and, in particular, to food and beverage products, which have a great influence on greenhouse gases emissions. The proposed method considers the main nexus aspects in addition to other relevant aspects such as climate change, which is deeply linked with energy and water systems, and assessing process as well as product. In this framework, this study develops an integrated index (IWECN) that combines life cycle assessment (LCA) and linear programming (LP) to assess energetic, water and climate systems, enabling the identification of those products with minors energetic and water intensity and climate change effects and helping to the decision-making process and to the development of eco-innovation measures. In this case, the product assessed was one bottle (70 cl) of gin and two main hotspots were identified: the production of the glass bottle and the energy requirements of the distillation stage. Based on that, several eco-innovation strategies were proposed: the use of photovoltaic solar energy as energy source and the substitution of the glass bottle by a plastic one and by a tetra brick. The nexus results indicated that the use of solar photovoltaic energy and plastic as bottle material was the best alternative decreasing 58% the IWECN value of the production of one bottle of gin. The sensitivity analysis presented a strong preference for photovoltaic solar energy in comparison with electric power and for the reduction of the glass bottle weight or its substitution by a plastic bottle. The use of the IWECN index is extendable to any product with the aim of facilitating the decision-making process in the development of more sustainable products to introduce them in new green markets.
Mostrar más [+] Menos [-]Switchable-hydrophilicity solvent-based liquid-phase microextraction in an on-line system: Cobalt determination in food and water samples Texto completo
2022
Santos, Luana Bastos | Assis, Rosivan dos Santos de | Silva, Uneliton Neves | Lemos, Valfredo Azevedo
An on-line system employing switchable-hydrophilicity solvent-based liquid-phase microextraction (SHS-LPME) is described in this work. The method is based on the preconcentration of the species formed between cobalt and the reagent 1-nitroso-2-naphthol (NN), with subsequent detection by digital image colorimetry. The system's operation begins with the on-line mixture of sample, switchable solvent, and an alkaline agent in a reaction coil. Then the mixture is transported to an extraction chamber. The introduction of a proton donor leads to the passage of the solvent to its hydrophobic form, which allows phase separation. The rich phase is then directed to a glass tube, where detection is performed. Octanoic acid, sodium carbonate, and sulfuric acid were used as the extraction solvent, the alkaline agent, and the proton donor, respectively. Under optimized conditions, the method presented a detection limit of 0.8 μg L⁻¹ and an enrichment factor of 41. The precision obtained was 4.8% (20 μg L⁻¹). The accuracy of the method was tested by the analysis of Tomato Leaves certified reference material (NIST 1573a). The method was applied to the determination of cobalt in food, dietary supplements, and water samples. The method is presented as a green alternative and very accessible to the determination of cobalt in the analyzed samples.
Mostrar más [+] Menos [-]Control of Listeria innocua Biofilms on Food Contact Surfaces with Slightly Acidic Electrolyzed Water and the Risk of Biofilm Cells Transfer to Duck Meat Texto completo
2018
Jeon, Hye Ri | Kwon, Mi Jin | Yoon, Ki Sun
Biofilm formation on food contact surfaces is a potential hazard leading to cross-contamination during food processing. We investigated Listeria innocua biofilm formation on various food contact surfaces and compared the washing effect of slightly acidic electrolyzed water (SAEW) at 30, 50, 70, and 120 ppm with that of 200 ppm of sodium hypochlorite (NaClO) on biofilm cells. The risk of L. innocua biofilm transfer and growth on food at retail markets was also investigated. The viability of biofilms that formed on food contact surfaces and then transferred cells to duck meat was confirmed by fluorescence microscopy. L. innocua biofilm formation was greatest on rubber, followed by polypropylene, glass, and stainless steel. Regardless of sanitizer type, washing removed biofilms from polypropylene and stainless steel better than from rubber and glass. Among the various SAEW concentrations, washing with 70 ppm of SAEW for 5 min significantly reduced L. innocua biofilms on food contact surfaces during food processing. Efficiency of transfer of L. innocua biofilm cells was the highest on polypropylene and lowest on stainless steel. The transferred biofilm cells grew to the maximum population density, and the lag time of transferred biofilm cells was longer than that of planktonic cells. The biofilm cells that transferred to duck meat coexisted with live, injured, and dead cells, which indicates that effective washing is essential to remove biofilm on food contact surfaces during food processing to reduce the risk of foodborne disease outbreaks.
Mostrar más [+] Menos [-]