Refinar búsqueda
Resultados 1-4 de 4
Replacing wheat bran by corn gluten feed without steep water in complete dog food Texto completo
2018
Pires, Juliana de Melo | Ferreira, Lívia Geraldi | Saad, Flávia Maria de Oliveira Borges | Zangeronimo, Márcio Gilberto | Bueno, Ives Cláudio da Silva | Carneiro, Aline Duarte de Souza | Corrêa, Graziane Ferrer | Parisi, Giuliana | Brandi, Roberta Ariboni
Twenty-four adult Beagles were utilised to evaluate the partial replacement of wheat bran with corn gluten feed without steep water on digestibility and characteristics of faeces. The treatments were 0 (no substitution), 30, 60 or 90 g/kg of corn gluten without steep water. There was no effect (p > .05) on the digestibility coefficients (g/kg) of dry matter (0.771), organic matter (0.806), crude protein (0.813), ether extract (0.798), crude fibre (0.393), neutral detergent fibre (0.425), acid detergent fibre (0.286) and crude energy (0.812), whilst there was effect (p < .05) on the digestible and metabolisable energy. There were effects (p < .05) for dry matter and pH of faeces but no effect (p > .05) was found on the remaining faecal characteristics: excretion for 100 g of food (56.77 g), excretion (129.6 g/day and 49.0 g dry matter/day), score (3.90), dry matter excretion for 100 g of food (22.86 g), buffering capacity (BC) at pH 5 (57.81), ammonia nitrogen (1.46 g/kg of faecal dry matter) and water balance (333.25 mL/day), in vivo and in situ gas production (p > .05). Corn gluten feed without steep water can be utilised to replace up to 90 g/kg of wheat bran without causing negative effect on the digestibility and characteristics of faeces.
Mostrar más [+] Menos [-]Opportunities and limitations of food-feed crops for livestock feeding and implications for livestock-water productivity Texto completo
2009
Blümmel, M. | Samad, M. | Singh, O.P. | Amede, T.
The paper discusses the contribution of crop residues (CR) to feed resources in the context of the water productivity of CR in livestock feeding, using India as an example. It is argued that crop residues are already the single most important feed resource in many livestock production systems in developing countries and that increasing their contribution to livestock feeding needs to be linked to improving their fodder quality. Using examples from multi-dimensional crop improvement, it is shown that CR fodder quality of key crops such as sorghum, rice and groundnut can be improved by genetic enhancement without detriment to grain and pod yields. Improving crop residue quality through genetic enhancement, agronomic and management interventions and strategic supplementation could improve water productivity of farms and systems considerably. The draw-backs of CR based feeding regimes are also pointed out, namely that they result in only moderate levels of livestock productivity and produce higher greenhouse gas emissions than are observed under feeding regimes that are based on high quality forages and concentrates. It is argued that feed metabolisable energy (ME) content should be used as an important determinant of livestock productivity; water requirement for feed and fodder production should be related to a unit of feed ME rather than feed bulk. The paper also revisits data from the International Water Management Institute (IWMI) work on livestock-water productivity in the Indian state of Gujarat, showing that water input per unit ME can vary several-fold in the same feed depending on where the feed is produced. Thus, the production of one mega joule of ME from alfalfa required 12.9L of irrigation-derived water in south Gujarat but 50.7L of irrigation-derived water in north Gujarat. Wheat straw in south Gujarat required 20.9L of irrigation-derived water for 1MJME and was in this instance less water use efficient than alfalfa. We conclude that water use efficiency across feed and fodder classes (for example crop residue v. planted forages) and within a feed is highly variable. Feeding recommendations should be made according to specific water use requirement per unit ME in a defined production system.
Mostrar más [+] Menos [-]Drinking water boosts food intake rate, body mass increase and fat accumulation in migratory blackcaps (Sylvia atricapilla) Texto completo
2008
Tsurim, Ido | Sapir, Nir | Belmaker, Jonathan | Shanni, Itai | Izhaki, Ido | Wojciechowski, Michał S. | Karasov, William H. | Pinshow, Berry
Fat accumulation by blackcaps (Sylvia atricapilla) is a prerequisite for successful migratory flight in the autumn and has recently been determined to be constrained by availability of drinking water. Birds staging in a fruit-rich Pistacia atlantica plantation that had access to water increased their body mass and fat reserves both faster and to a greater extent than birds deprived of water. We conducted a series of laboratory experiments on birds captured during the autumn migration period in which we tested the hypotheses that drinking water increases food use by easing limitations on the birds' dietary choices and, consequently, feeding and food processing rates, and that the availability of drinking water leads to improved digestion and, therefore, to higher apparent metabolizable energy. Blackcaps were trapped in autumn in the Northern Negev Desert, Israel and transferred to individual cages in the laboratory. Birds were provided with P. atlantica fruit and mealworms, and had either free access to water (controls) or were water-deprived. In experiment 1, in which mealworm availability was restricted, water-deprived birds had a fourfold lower fruit and energy intake rates and, consequently, gained less fat and total mass than control birds. Water availability did not affect food metabolizability. In experiment 2, in which mealworms were provided ad libitum, water availability influenced the birds' diet: water-restricted birds ate more mealworms, while control birds consumed mainly P. atlantica fruit. Further, in experiment 2, fat and mass gain did not differ between the two treatment groups. We conclude that water availability may have important consequences for fat accumulation in migrating birds while they fatten at stopover sites, especially when water-rich food is scarce. Restricted water availability may also impede the blackcap's dietary shift from insectivory to frugivory, a shift probably necessary for successful pre-migratory fattening.
Mostrar más [+] Menos [-]High-fibre pelleted rations decrease water intake but do not improve physiological indexes of welfare in food-restricted female broiler breeders Texto completo
2006
Hocking, P.M.
1. A 3 x 2 factorial experiment was conducted with three diets and two lines of broiler breeder females to evaluate the contribution of low-energy rations for improving the welfare of feed-restricted birds during rearing. Experimental diets were fed from 6 to 16 weeks of age and were created by diluting a conventional grower (Control) ration containing 11.0 MJ ME/kg with 200 (8.8 MJ ME/kg) or 400 (6.6 MJ ME/kg) g oat hulls/kg using Optimoist to facilitate the pelleting process. Welfare was assessed by changes in behaviour and physiological variables at 8, 12 and 16 weeks of age. Birds were fed restricted quantities of feed to meet recommended body weight targets. 2. There was a decrease in the proportion of observations of drinking and an increase of preening in birds fed on the two experimental diets compared with the control. There was a linear decrease in litter moisture and the number of litter changes with increasing diet dilution, and water intake at 12 weeks was higher in the control than in the two experimental diets. There were no changes in physiological indexes of welfare (heterophil-lymphocyte ratio, plasma corticosterone and antibody responses) associated with the dietary treatments. 3. There were no important differences in the growth, behaviour or physiological responses to dietary treatment between the two lines of broiler breeders. Changes with age were similar to those reported in other experiments. 4. It was concluded that low-energy pelleted diets would improve litter conditions but not improve indexes of welfare in feed-restricted broiler breeders.
Mostrar más [+] Menos [-]