Refinar búsqueda
Resultados 1-5 de 5
Food ingestion and water turnover in hummingbirds: how much dietary water is absorbed? Texto completo
1999
McWhorter, T. | Martinez del Rio, C.
Hummingbirds are specialized nectarivores that feed on dilute solutions of sugars with trace amounts of amino acids and electrolytes. Their diets contain excess water that, if absorbed, must be eliminated. It has been hypothesized that in hummingbirds only a small fraction of this dietary water may be absorbed in the intestine. Here, we report the results of experiments designed to examine the relationship between nectar intake and water turnover in hummingbirds. Our results also allow the estimation of water absorption across the intestine and therefore test the hypothesis that ingested water in hummingbirds passes largely unabsorbed through the gastrointestinal tract. We found that fractional and total water turnover increased linearly with water ingestion. At low sucrose concentrations, food intake rates between four and five times body mass per 12 h were not unusual. A simple mass-balance model suggested that 78 % of ingested water was absorbed in the gastrointestinal tract and hence must be processed by the kidneys. However, fractional water absorption was variable and did not appear to be correlated with food or water intake parameters. Our results do not lend support to the hypothesis that the bulk of dietary water passes through the intestine unabsorbed. Although hummingbird kidneys appear well suited to excrete large volumes of dilute urine, rates of energy assimilation in hummingbirds may be constrained by excess water elimination when these birds are feeding on nectars with a low sugar concentration. | T.J. McWhorter and C. Martinez del Rio
Mostrar más [+] Menos [-]Implications of animal water balance for terrestrial food webs Texto completo
2017
.McCluney, Kevin E
Recent research has documented shifts in per capita trophic interactions and food webs in response to changes in environmental moisture, from the top-down (consumers to plants), rather than solely bottom-up (plants to consumers). These responses may be predictable from effects of physiological, behavioral, and ecological traits on animal water balance, although predictions could be modified by energy or nutrient requirements, the risk of predation, population-level responses, and bottom-up effects. Relatively little work has explicitly explored food web effects of changes in animal water balance, despite the likelihood of widespread relevance, including during periodic droughts in mesic locations, where taxa may lack adaptations for water conservation. More research is needed, particularly in light of climate change and hydrological alteration.
Mostrar más [+] Menos [-]Food-deprivation, compensatory growth and hydro-mineral balance in Atlantic salmon (Salmo salar) post-smolts in sea water Texto completo
2009
Stefansson, Sigurd O. | Imsland, Albert K. | Handeland, Sigurd O.
Groups of 0+ Atlantic salmon (Salmo salar) smolts were transferred to duplicate seawater tanks, and subjected to five different ration levels, 0% (starved), 25%, 50%, 75% or 100% (full fed). Waste feed was collected after each meal. After six weeks all groups were re-fed in excess. During the trial period body weight and length increased significantly in the 50, 75 and 100% groups, while no significant changes in body weight were observed in the 0% and 25% groups. A significant decrease in SGR was observed in the 0 and 25% groups during the first month in sea water. After re-feeding, SGR increased in all groups. All groups, except the previously starved group, showed peak SGR between weeks 6-8 and 8-12. Food restriction at 0% and 25% of full ration for a period of six weeks resulted in significant osmotic disturbances. After six weeks in sea water, plasma Cl⁻ levels were higher in the 0% group than in the other groups. Branchial Na⁺,K⁺-ATPase activity increased in all groups following exposure to seawater. Re-feeding caused a transient increase in branchial Na⁺,K⁺-ATPase activity after two weeks in the previously starved group, with a concurrent reduction in plasma Cl⁻ levels. Previous exposure to different ration levels significantly influenced growth rate and mean body size. Compensatory growth and partial size compensation was seen in the 0, 25 and 50% feed deprivation groups, whereas full size compensation was found in the 75% group.
Mostrar más [+] Menos [-]How dryland mammals will respond to climate change : the effects of body size, heat load and a lack of food and water Texto completo
2021
Fuller, Andrea | Mitchell, Duncan | Maloney, Shane K. | Hetem, Robyn S. | Fonseca, Vinicius F.C. | Meyer, Leith Carl Rodney | Van de Ven, Tanja M.F.N. | Snelling, Edward P.
Mammals in drylands are facing not only increasing heat loads but also reduced water and food availability as a result of climate change. Insufficient water results in suppression of evaporative cooling and therefore increases in body core temperature on hot days, while lack of food reduces the capacity to maintain body core temperature on cold nights. Both food and water shortage will narrow the prescriptive zone, the ambient temperature range over which body core temperature is held relatively constant, which will lead to increased risk of physiological malfunction and death. Behavioural modifications, such as shifting activity between night and day or seeking thermally buffered microclimates, may allow individuals to remain within the prescriptive zone, but can incur costs, such as reduced foraging or increased competition or predation, with consequences for fitness. Body size will play a major role in predicting response patterns, but identifying all the factors that will contribute to how well dryland mammals facing water and food shortagewill copewith increasing heat loads requires a better understanding of the sensitivities and responses ofmammals exposed to the direct and indirect effects of climate change. | The South African National Research Foundation (NRF), the Carnegie Corporation of New York, the Claude Leon Foundation, the Global Change System for Analysis, Research and Training (START), the Oppenheimer Memorial Trust, the Tswalu Foundation, the University of the Witwatersrand, and the Australian Research Council. | http://jeb.biologists.org | am2022 | Anatomy and Physiology | Centre for Veterinary Wildlife Studies | Paraclinical Sciences
Mostrar más [+] Menos [-]Identification and characterization of functional aquaporin water channel protein from alimentary tract of whitefly, Bemisia tabaci Texto completo
2011
Mathew, Lolita G. | Campbell, Ewan M. | Yool, Andrea J. | Fabrick, Jeffrey A.
Some hemipteran xylem and phloem-feeding insects have evolved specialized alimentary structures or filter chambers that rapidly transport water for excretion or osmoregulation. In the whitefly, Bemisia tabaci, mass movement of water through opposing alimentary tract tissues within the filter chamber is likely facilitated by an aquaporin protein. B. tabaci aquaporin-1 (BtAQP1) possesses characteristic aquaporin topology and conserved pore-forming residues found in water-specific aquaporins. As predicted for an integral transmembrane protein, recombinant BtAQP1 expressed in cultured insect cells localized within the plasma membrane. BtAQP1 is primarily expressed in early instar nymphs and adults, where in adults it is localized in the filter chamber and hindgut. Xenopus oocytes expressing BtAQP1 were water permeable and mercury-sensitive, both characteristics of classical water-specific aquaporins. These data support the hypothesis that BtAQP1 is a water transport protein within the specialized filter chamber of the alimentary tract and functions to translocate water across tissues for maintenance of osmotic pressure and/or excretion of excess dietary fluid.
Mostrar más [+] Menos [-]