Refinar búsqueda
Resultados 1-4 de 4
Antioxidant and pro-oxidant in vitro evaluation of water-soluble food-related botanical extracts Texto completo
2011
Damien Dorman, H.J. | Hiltunen, Raimo
The total phenol content, antioxidant and pro-oxidant activities of deodourised, water-soluble aniseed, basil, caraway, cardamon, fennel, ginger, juniper, laurel and parsley extracts were estimated using a number of in vitro assays. The laurel and basil extracts contained the highest phenol content of 107.3±1.3 GAE [mg gallic acid equivalents/g (dry wt.) extract] and 98.5±1.4 GAE, respectively, whilst the ginger extract contained the lowest content at 14.9±0.9 GAE. Juniper, laurel and basil extracts were consistently better than the other extracts in terms of iron(III) reducing activity, inhibition of β-carotene-linoleate thermal co-oxidation and N,N-dimethyl-p-phenylenediamine and hydroxyl radical scavenging assays. Potential pro-oxidant activities of the extracts were assessed using both DNA and bovine serum albumin (BSA) as substrates. None of the extracts were capable of stimulating hydroxyl-mediated DNA fragmentation; however, the extracts could be categorised in the protein oxidation assay as extracts with (i) no significant (p>0.05) effect, (ii) a significant (p<0.05) protective effect or (iii) a significant (p<0.05) pro-oxidant effect. The extracts from juniper, laurel and basil had a pro-oxidative effect upon BSA at a dose of 2mg/ml, as estimated from the degree of carbonylation measured.
Mostrar más [+] Menos [-]Using a Concentrate of Phenols Obtained from Olive Vegetation Water to Preserve Chilled Food: Two Case Studies Texto completo
2016
Fasolato, Luca | Cardazzo, Barbara | Balzan, Stefania | Carraro, Lisa | Andreani, Andrea Nadia | Taticchi, Agnese | Yambo,
Phenols are plant metabolites characterised by several interesting bioactive properties such as antioxidant and bactericidal activities. In this study the application of a phenols concentrate (PC) from olive vegetation water to two different fresh products – gilt-head seabream (Sparus aurata) and chicken breast – was described. Products were treated in a bath of PC (22 g/L; chicken breast) or sprayed with two different solutions (L1:0.75 and L2:1.5 mg/mL; seabream) and then stored under refrigeration conditions. The shelf life was monitored through microbiological analyses – quality index method for seabream and a specific sensory index for raw breast. The secondary products of lipid-peroxidation of the chicken breast were determined using the thiobarbituric acid reactive substances (TBARs) test on cooked samples. Multivariate statistical techniques were adopted to investigate the impact of phenols and microbiological data were fitted by DMfit software. In seabream, the levels of PC did not highlight any significant difference on microbiological and sensory features. DMfit models suggested an effect only on H₂S producing bacteria with an increased lag phase compared to the control samples (C: 87 h vs L2: 136 h). The results on chicken breast showed that the PC bath clearly modified the growth of Pseudomonas and Enterobacteriaceae. The phenol dipping was effective in limiting lipid-peroxidation (TBARs) after cooking. Treated samples disclosed an increase of shelf life of 2 days. These could be considered as preliminary findings suggesting the use of this concentrate as preservative in some fresh products.
Mostrar más [+] Menos [-]A Salting-out Liquid-Liquid extraction (SALLE) for the analysis of caprolactam and 2,4-di-tert butyl phenol in water and food simulants. Study of the salinity effect to specific migration from food contact materials Texto completo
2020
Tsochatzis, Emmanouil D. | Mieth, Anja | Alberto Lopes, Joao | Simoneau, Catherine
Caprolactam and 2,4-di-tert-butyl phenol (2,4-DTBP) are substances typically found in some food contact materials (FCMs). They are known to often migrate into food, and are difficult to analyse in liquid food simulants using GC. In this work a simple salting-out Liquid-Liquid Extraction (SALLE) for the analysis of both substances in water and the official food simulant A (10 % v/v ethanol, Regulation (EU) No. 10/2011) is presented. The method, which included analytical determination by GC-MS, was optimized and validated to ensure sufficient analytical quality.The method’s LOQs allowed the proper quantification of caprolactam at its EU legislative limit (15 mg kg⁻¹). For 2,4-DTBP the method also revealed good sensitivity, although no official limits have been established yet. Linear regression coefficients (R²) were in all cases higher than 0.999, and recoveries ranged from 87 % and 95% for caprolactam and 2,4-DTBP, respectively. Precision was also acceptable, with the RSDs (%) below 12 %. The method proved to be adequate to be used for routine analysis.The presence of salt during migration of caprolactam and 2,4-DTBP was also investigated in this work. Polyamide/polyethylene FCM multilayer films have been tested with water and simulant A, containing different amounts of NaCl (up to 15 % m/v), and applying different migration conditions (temperature and time). The results indicated that salinity plays an important effect on the migration of caprolactam, with the presence of salt reducing its migration in case of water and increasing it in case of simulant A. These preliminary results seem to indicate that migration testing should consider not only the well-known fatty content of a food, but also its salinity content, as it may end up affecting drastically the migration of polar substances.
Mostrar más [+] Menos [-]A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction Texto completo
2018
Wang, Jiayi | Niu, Yiming | Zhang, Chi | Chen, Yiqiang
A new micro-plate colorimetric assay was developed for rapid determination of zinc in animal feed, pet food and drinking water. Zinc ion was extracted from sample by trichloroacetic acid and then reacted with 2-(5-Bromo-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS) to form a Zn-PAPS complex to be detected by a micro-plate reader at 552 nm. An ion masking formula including salicylaldoxime, deferoxamine and sodium citrate were screened and applied to exclude the interference from other heavy metals and a partitioning correction approach was proposed to eliminate the matrix effect derived from feed sample. The entire procedure can be completed within 40 min and the detection range was 0.038–8.0 μg mL−1 zinc in buffer solution. Moreover, the analysis in real samples revealed the consistency of results by this assay and those by atomic absorption spectrometry analysis. These features highlighted the possibility for this proposed assay to be used for rapid determination of zinc in complex samples.
Mostrar más [+] Menos [-]