Refinar búsqueda
Resultados 1-6 de 6
Aigua i producció d’aliments. Per què els cultius necessiten aigua? | Water and food production. Why crops need water? | Agua y producción de alimentos. ¿Por qué los cultivos necesitan agua? Texto completo
2021
Girona, Joan | Villar, Josep M.
Aquest article explica el paper de l’aigua en el comportament general de les plantes i, en concret, la seva rellevància en l’agricultura, amb l’objectiu que els lectors, no especialitzats en aspectes fisiològics, entenguin la importància del recurs de l’aigua en la producció d’aliments i béns. Per a fer-ho, s’analitzen els conceptes més rellevants que governen el funcionament de l’aigua a la planta i la relació amb els processos més lligats a la producció (fotosíntesi i creixement vegetatiu). Per a il·lustrar aquests conceptes es presenten alguns exemples agronòmics relacionats amb la sensibilitat estacional al dèficit hídric, l’eficiència en l’ús de l’aigua o la dependència de la producció d’aliments a la disponibilitat d’aigua.PARAULES CLAU: aigua, producció d’aliments, fisiologia vegetal, potencial hídric, fotosíntesi, transpiració, sensibilitat estacional al dèficit hídric. | This paper explains the role of water in the general behaviour of plants and more specifically its importance in agriculture, with the aim to let the reader who is not specialized in physiological aspects understand the function of water in the production of food and goods. To do this, the most significant concepts regulating the behaviour of water inside the plant have been analysed, together with the relationship of water with the processes most closely linked to production (photosynthesis and vegetative growth). Likewise, to illustrate these concepts, some agronomic examples are given in relation to seasonal sensitivity to water deficit, water use efficiency, and the dependence of food production on water availability.KEYWORDS: water, food production, plant physiology, water potential, photosynthesis, transpiration, seasonal sensitivity to water deficit. | Este artículo explica el papel del agua en el comportamiento general de las plantas y, en concreto, su relevancia en la agricultura, con el objetivo de que los lectores, no especializados en aspectos fisiológicos, puedan entender la importancia del recurso del agua en la producción de alimentos y bienes. Para ello, se han analizado los conceptos más destacados que gobiernan el funcionamiento del agua en la planta y su relación con los procesos más vinculados a la producción (fotosíntesis y crecimiento vegetativo). Para ilustrar estos conceptos se presentan algunos ejemplos agronómicos relacionados con la sensibilidad estacional al déficit hídrico, la eficiencia en el uso del agua o la dependencia de la producción de alimentos a la disponibilidad de agua.PALABRAS CLAVE: agua, producción de alimentos, fisiología vegetal, potencial hídrico, fotosíntesis, transpiración, sensibilidad estacional al déficit hídrico.
Mostrar más [+] Menos [-]Irrigation water and food safety
2006
Biavati, B. | Mattarelli, P.
Seventy-one percent of the earth surfaces is covered by oceans. Water therefore is an important habitat for microorganisms and the other living beings. A consistent microbial biodiversity is present in water from phototrophs to chemioorganotrophs. The complex relationships between different microorganisms and the environment are often modified by organic, chemical and physic contaminations. The input of organic material can determine pathogenic pollution. The presence of pathogens has to be monitored to eliminate serious problems for animal and human health. Water, in fact, can be a vehicle direct (drinking water) or indirect (irrigation water) for microbial pathogens | Il 71% della superficie terrestre è costituito dagli oceani. L'acqua pertanto è un importante ambiente per i microrganismi, oltre che per tutti gli altri esseri viventi. Una grande varietà di tipi microbici colonizzano l'habitat acquatico, dai fototrofi ai chemiorganotrofi. Le dinamiche che si creano fra i diversi componenti microbici e l'ambiente sono spesso alterate da contaminazioni organiche, chimiche e fisiche. L'immissione di materiale organico può anche essere fonte di inquinamento di microrganismi patogeni la cui presenza va monitorata al fine di evitare seri problemi alla salute umana e animale. L'acqua, infatti, può rappresentare un veicolo di trasferimento, sia diretto (acqua potabile), sia indiretto (acque di irrigazione), di microrganismi patogeni
Mostrar más [+] Menos [-]Managing energy-water-carbon-food nexus for cleaner agricultural greenhouse production: A control system approach Texto completo
2022
Ren, Zhiling | Dong, Yun | Lin, Dong | Zhang, Lijun | Fan, Yuling | Xia, Xiaohua
Poverty, food insecurity and climate change are global issues facing humanity, threatening social, economic and environmental sustainability. Greenhouse cultivation provides a potential solution to these challenges. However, some greenhouses operate inefficiently and need to be optimized for more economical and cleaner crop production. In this paper, an economic model predictive control (EMPC) method for a greenhouse is proposed. The goal is to manage the energy-water‑carbon-food nexus for cleaner production and sustainable development. First, an optimization model that minimizes the greenhouse's operating costs, including costs associated with greenhouse heating/cooling, ventilation, irrigation, carbon dioxide (CO₂) supply and carbon emissions taking into account both the CO₂ equivalent (CO₂-eq) emissions caused by electrical energy consumption and the negative emissions caused by crop photosynthesis, is developed and solved. Then, a sensitivity analysis is carried out to study the impact of electricity price, supplied CO₂ price and social cost of carbon (SCC) on the optimization results. Finally, a model predictive control (MPC) controller is designed to track the optimal temperature, relative humidity, CO₂ concentration and incoming radiation power in presence of system disturbances. Simulation results show that the proposed approach increases the operating costs by R186 (R denotes the South African currency, Rand) but reduces the total cost by R827 and the carbon emissions by 1.16 tons when compared with a baseline method that minimizes operating costs only. The total cost is more sensitive to changes in SCC than that in electricity price and supplied CO₂ price. The MPC controller has good tracking performance under different levels of system disturbances. Greenhouse environmental factors are kept within specified ranges suitable for crop growth, which increases crop yields. This study can provide effective guidance for growers' decision-making to achieve sustainable development goals.
Mostrar más [+] Menos [-]Elevated CO2 (FACE) Affects Food and Feed Quality of Cereals (Wheat, Barley, Maize): Interactions with N and Water Supply Texto completo
2015
Erbs, Martin | Manderscheid, Remy | Jansen, Giesela | Seddig, Sylvia | Wroblewitz, Stefanie | Hüther, Liane | Schenderlein, Anke | Wieser, Herbert | Dänicke, Sven | Weigel, Hans-Joachim
Climate change will not only affect crop biomass production but also crop quality. While increasing atmospheric CO2 concentrations are known to enhance photosynthesis and biomass production, effects on the chemical composition of plants are less well known. This is particularly true for major crop plants with respect to harvestable yield quality. Moreover, it remains open, how these effects on quality may be realized under field conditions and how management (e.g. plant N nutrition) or environmental factors (e.g. water availability) will alter impacts of elevated CO2. Here we report on a series of free air CO2 enrichment (FACE) experiments with wheat and barley and with maize in which effects of elevated CO2 combined with different levels of N supply (wheat and barley) and with drought stress (maize) on grain and biomass quality characteristics were investigated. Winter wheat and winter barley (1st experiment) and maize (2nd experiment) were grown in the field each for two growing seasons under ambient and elevated CO2 concentration (FACE, 550μmol mol-1). Wheat and barley were grown under adequate N supply and under 50% of adequate N as sub-treatments. In the maize experiment rain shelters were used to create two different levels of plant water supply (well-watered and drought stress – about 50% of well-watered) as sub-treatments. Treatment effects on elemental composition and a variety of quality characteristics of the plant material at final harvest were investigated. This included a detailed analysis of wheat grain protein components and of different fiber fractions of maize. Compiled results of the relative effects of elevated CO2, N and drought stress treatments on different quality parameters of the crops are presented.
Mostrar más [+] Menos [-]Biology and ecology in brackish water regions, 1: The food-chain and distribution of micro organisms in brackish waters
1995
Maeda, M. (National Research Inst. of Aquaculture, Tamaki, Mie (Japan))
Spray irrigation with microcystins-rich water affects plant performance from the microscopic to the functional level and food safety of spinach (Spinacia oleracea L.) Texto completo
2021
Tsoumalakou, E. | Papadimitriou, T. | Berillis, P. | Kormas, K.A. | Levizou, E.
Irrigation water coming from freshwater bodies that suffer toxic cyanobacterial blooms causes adverse effects on crop productivity and quality and raises concerns regarding food contamination and human exposure to toxins. The common agricultural practice of spray irrigation is an important exposure route to cyanotoxins, yet its impact on crops has received little attention. In the present study we attempted an integrated approach at the macro- and microscopic level to investigate whether spray or drip irrigation with microcystins (MCs)-rich water differently affect spinach performance. Growth and functional features, structural characteristics of stomata, and toxin bioaccumulation were determined. Additionally, the impact of irrigation method and water type on the abundance of leaf-attached microorganisms was assessed. Drip irrigation with MCs-rich water had detrimental effects on growth and photosynthetic characteristics of spinach, while spray irrigation ameliorated to various extents the observed impairments. The stomatal characteristics were differently affected by the irrigation method. Drip-irrigated spinach leaves showed significantly lower stomatal density in the abaxial epidermis and smaller stomatal size in the adaxial side compared to spray-irrigation treatment. Nevertheless, the latter deteriorated traits related to fresh produce quality and safety for human consumption; both the abundance of leaf-attached microorganisms and the MCs bioaccumulation in edible tissues well exceeded the corresponding values of drip-irrigated spinach with MC-rich water. The results highlight the significance of both the use of MCs-contaminated water in vegetable production and the irrigation method in shaping plant responses as well as health risk due to human and livestock exposure to MCs.
Mostrar más [+] Menos [-]