Refinar búsqueda
Resultados 1-10 de 17
Suitability of Food Processing Waste Water for Irrigation Texto completo
1972
Pearson, George A.
The waste water from food processing contains dissolved salts and organic matter. The amount of each depends upon the product being processed and the procedure being used. The suitability for irrigation of food processing waste water from 20 plants processing nine food products was assessed from the standpoint of electrical conductivity (EC), chloride and sodium concentrations, sodium-adsorption-ratio (SAR), and chemical oxygen demand (COD). Waste water from plants processing green beans (Phaseolus vulgaris L.), squash (Cucurbita pepo var. melopepo Alef.), tomatoes (Lycopersicon esculentum Mill.), corn (Zea mays L.), steam peeled potatoes (Solanum tuberosum L.) and sweet potatoes (Ipomoea batatas Lam.), and poultry is suitable for irrigation under most conditions. Waste water from some pea (Pisum sativum L.) and lima beans (Phaseolus lunatus L.) processing plants may be suitable for irrigation, but is of questionable suitability from others. Waste water from lye-peel potato processing is not suitable for irrigation.
Mostrar más [+] Menos [-][Overfertilized water - underfertilized fields: approach to cycling and sustainable food supply [Bohuslaen]]
1996
Schoenbeck, A.
Response of broilers to deprivation of food and water for 24 hours
1995
Knowles, T.G. | Warriss, P.D. | Brown, S.N. | Edwards, J.E. | Mitchell, M.A.
In order to provide information on the state of hydration of broilers during marketing, 7-week-old Ross broilers of mixed sex were kept at 17 or 23 degrees C and deprived of food, or food and water, for 24 h. Measurements were made of live weight, carcass weight, muscle moisture, packed cell volume, plasma glucose, corticosterone, total protein, osmolality and sodium. There was a decrease in live weight, carcass weight, plasma glucose and plasma total protein, and an increase in packed cell volume and corticosterone, in birds deprived of food, or food and water. Muscle moisture increased in birds deprived of food and decreased in birds deprived of food and water. Osmolality decreased in birds deprived of food, the decrease being greater in birds at 23 degrees C. Plasma sodium levels were higher in birds kept at 23 degrees C and increased only in birds deprived of food and water at 23 degrees C.
Mostrar más [+] Menos [-]Assessment of drinking water contamination in food stalls of Jashore Municipality, Bangladesh Texto completo
2021
Shaibur, Molla Rahman | Hossain, Mohammed Sadid | Khatun, Shirina | Tanzia, F. K Sayema
This study aimed to determine the quality of drinking water supplied in different types of food stalls in Jashore Municipality, Bangladesh. A total of 35 water samples were collected from different tea stalls, street side fast food stalls, normal restaurants and well-furnished restaurants. The water quality was evaluated by determining the distinct physical, chemical and biological parameters. The results revealed that the water used in the food stalls and restaurants for drinking purpose was in desired quality in terms of turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO₃⁻), sulfate (SO₄²⁻), phosphate (PO₄³⁻), chloride (Cl⁻), sodium (Na) and potassium (K) concentrations. The values were within the permissible limit proposed by the Bangladesh Bureau of Statistics and the World Health Organization. Concentrations of calcium (Ca) and magnesium (Mg) found in several samples were higher than the World Health Organization standard. Iron (Fe) concentrations were higher than the permissible limit of the World Health Organization. Only 46% exceeded the permissible limit of Bangladesh Bureau Statistics. The threatening result was that the samples were contaminated by fecal coliform, indicating that the people of Jashore Municipality may have a greater chance of being affected by pathogenic bacteria. The drinking water provided in the street side fast food stalls was biologically contaminated. The findings demonstrate that the drinking water used in food stalls and restaurants of Jashore Municipality did not meet up the potable drinking water quality standards and therefore was detrimental to public health.
Mostrar más [+] Menos [-]Rapid NMR determination of inorganic cations in food matrices: Application to mineral water Texto completo
2017
Monakhova, Yulia B. | Kuballa, Thomas | Tschiersch, Christopher | Diehl, Bernd W.K.
A nuclear magnetic resonance (NMR) method was developed to quantify cations in mineral water. The procedure was based on integration of signals from metal-ethylenediaminetetraacetic acid (EDTA) complexes at δ 2.70ppm for Mg2+ and δ 2.56ppm for Ca2+. The limits of detection were below 0.5mg/L. Lack of precision did not exceed 5%. Linearity was between 1 and 500mg/L. Correlation between NMR and a reference chromatographic method was significant (p<0.0001, R2=0.99). PLS models were also established to estimate Na+ and K+ contents. R2 was 0.85 and 0.83, respectively. Root mean square errors of cross validation (RMSECV) were 8.0mg/L and 1.9mg/L for Na+ and K+, respectively. The method was applied successfully for the analysis of 31 mineral water samples. This method is a useful tool for quantification of important cations in mineral water and might easily be adapted to other food matrices.
Mostrar más [+] Menos [-]Vasopressin and nitric oxide synthesis after three days of water or food deprivation Texto completo
2006
Mornagui, B. | Grissa, A. | Duvareille, M. | Gharib, C. | Kamoun, A. | El-Fazaa, S. | Gharbi, N.
Nitric oxide has been suggested to be involved in the regulation of fluid and nutrient homeostasis. In the present investigation, vasopressin and nitric oxide metabolite (nitrite and nitrate) levels were determined in plasma of male Wistar rats submitted to water or food deprivation for three days. Hematocrit and plasma sodium showed marked increase in dehydrated and starved rats. Potassium levels and plasma volume decreased in both treated groups. Plasma osmolality and vasopressin levels were significantly elevated in water deprived (362.8±7.1 mOsm/kg H<sub>2</sub>O, 17.3±2.7 pg/ml, respectively, p<0.001) rats, but not in food deprived (339.9±5.0, 1.34±0.28) rats, compared to the controls (326.1±4.1, 1.47±0.32). The alterations observed in plasma vasopressin levels were related to plasma osmolality rather than plasma volume. Plasma levels of nitrite and nitrate were markedly increased in both water and food deprived rats (respectively, 2.19±0.29 mg/l and 2.22±0.17 mg/l <i>versus</i>1.33±0.19 mg/l, both p<0.01). There was a significant negative correlation between plasma nitrite and nitrate concentration and plasma volume. These results suggest that both dehydration and starvation increase plasma nitric oxide, probably by activation of nitric oxide synthases. The release of nitric oxide may participate in the regulation of the alteration in blood flow, fluid and nutrient metabolism caused by water deprivation or starvation.
Mostrar más [+] Menos [-]Production of H2-rich syngas from gasification of unsorted food waste in supercritical water Texto completo
2020
Su, Hongcai | Kanchanatip, Ekkachai | Wang, Defeng | Zheng, Rendong | Huang, Zhicheng | Chen, Yang | Mubeen, Ishrat | Yan, Mi
In China, waste sorting practice is not strictly followed, plastics, especially food packaging, are commonly mixed in food waste. Supercritical water gasification (SCWG) of unsorted food waste was conducted in this study, using model unsorted food waste by mixture of pure food waste and plastic. Different operating parameters including reaction temperature, residence time, and feedstock concentration were investigated. Moreover, the effect of three representative food additives namely NaCl, NaHCO₃ and Na₂CO₃ were tested in this work. Finally, comparative analysis about SCWG of unsorted food waste, pure food waste, and plastic was studied. It was found that higher reaction temperature, longer residence time and lower feedstock concentration were advantageous for SCWG of unsorted food waste. Within the range of operating parameters in this study, when the feedstock concentration was 5 wt%, the highest H₂ yield (7.69 mol/kg), H₂ selectivity (82.11%), total gas yield (17.05 mol/kg), and efficiencies of SCWG (cold gas efficiency, gasification efficiency, carbon gasification efficiency, and hydrogen gasification efficiency) were obtained at 480 °C for 75 min. Also, the addition of food additives with Na⁺ promoted the SCWG of unsorted food waste. The Na₂CO₃ showed the best catalytic performance on enhancement of H₂ and syngas production. This research demonstrated the positive effect of waste sorting on the SCWG of food waste, and provided novel results and information that help to overcome the problems in the process of food waste treatment and accelerate the industrial application of SCWG technology in the future.
Mostrar más [+] Menos [-]Development of enterosorbents that can be added to food and water to reduce toxin exposures during disasters Texto completo
2019
Wang, Meichen | Hearon, Sara E. | Phillips, Timothy D.
Humans and animals can be exposed to mixtures of chemicals from food and water, especially during disasters such as extended droughts, hurricanes and floods. Drought stress facilitates the occurrence of mycotoxins such as aflatoxins B₁ (AfB₁) and zearalenone (ZEN), while hurricanes and floods can mobilize toxic soil and sediments containing important pesticides (such as glyphosate). To address this problem in food, feed and water, we developed broad-acting, clay-based enterosorbents that can reduce toxin exposures when included in the diet. In this study, we processed sodium and calcium montmorillonite clays with high concentrations of sulfuric acid to increase surface areas and porosities, and conducted equilibrium isothermal analyses and dosimetry studies to derive binding parameters and gain insight into: (1) surface capacities and affinities, (2) potential mechanisms of sorption, (3) thermodynamics (enthalpy) of toxin/surface interactions and (4) estimated dose of sorbent required to maintain toxin threshold limits. We have also used a toxin-sensitive living organism (Hydra vulgaris) to predict the safety and efficacy of newly developed sorbents. Our results indicated that acid processed montmorillonites were effective sorbents for AfB₁, ZEN and glyphosate, with high capacity and tight binding, and effectively protected hydra against individual toxins, as well as mixtures of mycotoxins.
Mostrar más [+] Menos [-]Ultralayered Co₃O₄ as a new adsorbent for preconcentration of Pb(II) from water, food, sediment and tobacco samples Texto completo
2013
Yavuz, Emre | Tokalıoğlu, Şerife | Şahan, Halil | Patat, Şaban
In this study, ultralayered Co₃O₄ adsorbent was synthesized and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The surface area of the solid material was found to be 75.5m²g⁻¹ by BET method. The ultralayered Co₃O₄ was used for the first time as an effective adsorbent for the preconcentration of the Pb(II) ions in various samples prior to flame atomic absorption detection. Analytical parameters affecting the solid phase extraction of Pb(II) such as pH, adsorption and elution contact time, eluent volume and concentration, sample volume and common matrix ions were investigated. The recovery values for Pb(II) were found to be ≥92% even in the presence of 75,000mgL⁻¹ Na(I), 75,000mgL⁻¹ K(I), and 75,000mgL⁻¹ Ca(II) ions. 10s vortexing time was enough for both adsorption and elution contact times. The elution was easily made with 2mL of 2.0molL⁻¹ HNO₃. The reusability (170 cycles) and adsorption capacity (35.5mgg⁻¹) of ultralayered Co₃O₄ were excellent. The preconcentration factor of the method and detection limit were found to be 175 and 0.72µgL⁻¹, respectively. The described method was validated with certified reference material (RM 8704 Buffalo River Sediment, BCR-482 Licken and SPS-WW1 Batch 111-Wastewater) and spiked real samples. It was also applied for the preconcentration of Pb(II) ions in various water (well water, mineral water, waste water and sea water), food (cauliflower and barley), street sediment and tobacco samples.
Mostrar más [+] Menos [-]Identification of Cationic and Anionic Surfactants by Chromatography–Mass-Spectrometry in the Microextraction–Fluorimetry Screening of Water and Food Products Texto completo
2021
Amelin, V. G. | Shogah, Z. A. Ch | Bol’shakov, D. S.
A method is proposed for the identification of surfactants by ultra-performance liquid chromatography (UPLC) with high-resolution mass spectrometry detection after screening water and food samples for the total concentration of cationic and anionic surfactants by microextraction–fluorimetry. The method is based on the use of dispersive liquid–liquid microextraction with chloroform of surfactant ion pairs with organic reagents (eosin and acridine yellow), measuring the fluorescence of the obtained adducts using a smartphone, obtaining RGB colorimetric characteristics, and determining the total surfactant concentration. The main analytical characteristics of the identification of cationic surfactants (alkylpyrdinium, alkyltrimethylammonium, alkyldimethylbenzylammonium (benzalkonium), alkylmethylethylbenzylammonium, didecyldimethylammonium, benzyldimethyl[3-(myristoylamino)propyl]ammonium, N,N-bis(3-aminopropyl)dodecylamine chlorides) and anionic surfactants (alkyl benzene sulfonates (sulfonol), alkyl sulfates, laureth sulfates, alkyl sulfonates, and sodium alkyl carboxylates) by chromatography–mass spectrometry under the selected conditions of chromatographic separation and mass spectrometric detection are found. The features of the chromatographic behavior of the surfactant polymerhomologs under the conditions of UPLC and gradient elution are considered.
Mostrar más [+] Menos [-]