Refinar búsqueda
Resultados 151-160 de 5,572
Dioxin contamination of food and water
1989
Żywność-woda-przemysł | Food-water-industry
1978
Miętkiewski, Eugeniusz
Agri-Food System Water Use Database Texto completo
2023
International Food Policy Research Institute
This database provides information about the amount of water use in agriculture food systems covering all sectors from farming to food processing industries. The data are presented at the country level with sectoral disaggregation following the Nexus Social Accounting Matrix (SAM) sectoral specifications. The database also differentiates the type of water in each sector based on water sources. The green water refers to type of water originated from precipitation or rain, while the blue water refers to all water that comes from irrigation covering both surface and groundwater. Both types of water are consumed by plants or animals during the production process. The grey water on the other hand is the amount of water generated as an implication from production activities that cause the water polluted. Since it has loads of pollutants created from production activities, this type of water can be seen as a waste in the whole production system.
Mostrar más [+] Menos [-]The Future of Water for Food Texto completo
2022
Mohtar, Rabi H. | Fares, Ali | Department of Agriculture | Faculty of Agricultural and Food Sciences (FAFS) | American University of Beirut
Globally, water is a bottleneck to food security and, as such, a new approach for water for food is needed. Food insecurity is knocking at every nation's door, including those of the most developed. Moreover, the disruptions in food supply chains that result from continued reliance on a business-as-usual approach of traditional, non-sustainable food and agricultural systems make food insecurity even more vividly present. This article explores the current relationship between food production and water resources. It attempts to better understand how we might reduce the inter-dependencies between food and fresh water by exploring new and alternative sources of water, including improving the efficiencies of green and recycled water. Copyright © 2022 Mohtar and Fares.
Mostrar más [+] Menos [-]Water Footprint of Food Quality Schemes Texto completo
2021
Bodini, Antonio | Chiussi, Sara | Donati, Michele | Bellassen, Valentin | Török, Áron | Dries, Liesbeth | Ćorić, Dubravka, Sinčić | Gauvrit, Lisa | Tsakiridou, Efthimia | Majewski, Edward | Ristic, Bojan | Stojanovic, Zaklina | Gil Roig, Jose Maria | Lilavanichakul, Apichaya | An, Nguyễn Quỳnh | Arfini, Filippo | Università degli studi di Parma = University of Parma (UNIPR) | Centre d'Economie et de Sociologie Rurales Appliquées à l'Agriculture et aux Espaces Ruraux (CESAER) ; AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Corvinus University of Budapest | Wageningen University and Research [Wageningen] (WUR) | Faculty of Economics [Zagreb] ; University of Zagreb | Ecozept ; Partenaires INRAE | Aristotle University of Thessaloniki | Warsaw University of Life Sciences (SGGW) | University of Belgrade [Belgrade] | Centre for Agro-Food Economy & Development, UPC-IRTA, Castelldefels, Spain (CREDA) ; Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona] (UPC) | Kasetsart University [Bangkok, Thailand] (KU) | School of Economics [University of Economics Ho Chi Minh City] ; University of Economics Ho Chi Minh City (UEH)
International audience | Abstract Water Footprint (WF, henceforth) is an indicator of water consumption and has taken ground to assess the impact of agricultural production processes over freshwater. The focus of this study was contrasting non-conventional, certified products with identical products obtained through conventional production schemes (REF, henceforth) using WF as a measure of their pressure on water resources. The aim was to the show whether products that are certified as Food Quality Schemes (FQS, henceforth) could also incorporate the lower impact on water among their quality features. To perform this comparison, we analysed 23 products selected among Organic, PDO and PGI as FQS, and their conventional counterparts. By restricting the domain of analysis to the on-farm phase of the production chain, we obtained that that no significant differences emerged between the FQS and REF products. However, if the impact is measured per unit area rather than per unit product, FQS showed a significant reduction in water demand.
Mostrar más [+] Menos [-]Water for Food and Energy Security Texto completo
2018
Miralles-Wilhelm, Fernando | Hejazi, Mohamad | Kim, Song | Yonkofski, Catherine | Watson, David | Kyle, Page | Liu, Yaling | Vernon, Chris | Delgado, Alison | Edmonds, Jae | Clarke, Leon
Water, energy, and agriculture have been conventionally dealt with separately in investment planning. For each of these sectors, regulatory frameworks, organizations, and infrastructures have been put in place to address sector-specific challenges and demands. As the Middle East and North Africa works towards building a more sustainable future, a nexus approach that considers the risks and synergies among these sectors is needed. To demonstrate the added value of a nexus approach, this report applies scenario analysis and integrated assessment modelling of the water-energy-food nexus to the Middle East and North Africa. The analysis finds that water scarcity increases in all countries in the region over the coming decades, mostly due to growing demands. More importantly, the analysis finds that many countries in the region could run out of fossil groundwater by 2050 unless measures to curb unsustainable abstraction are implemented. The impacts of growing scarcity on agriculture are significant, with production projected to drop by 60 percent by 2050 in some countries. On the upside, reducing the dependence of the agricultural and energy sectors on water and transitioning to renewable energies can reduce water scarcity, at the same time reducing greenhouse gas emissions.
Mostrar más [+] Menos [-]The Water Footprint of Food Aid Texto completo
2015
Jackson, Nicole | Konar, Megan | Hoekstra, Arjen Y.
Food aid is a critical component of the global food system, particularly when emergency situations arise. For the first time, we evaluate the water footprint of food aid. To do this, we draw on food aid data from theWorld Food Programme and virtual water content estimates from WaterStat. We find that the total water footprint of food aid was 10 km3 in 2005, which represents approximately 0.5% of the water footprint of food trade and 2.0% of the water footprint of land grabbing (i.e., water appropriation associated with large agricultural land deals). The United States is by far the largest food aid donor and contributes 82% of the water footprint of food aid. The countries that receive the most water embodied in aid are Ethiopia, Sudan, North Korea, Bangladesh and Afghanistan. Notably, we find that there is significant overlap between countries that receive food aid and those that have their land grabbed. Multivariate regression results indicate that donor water footprints are driven by political and environmental variables, whereas recipient water footprints are driven by land grabbing and food indicators.
Mostrar más [+] Menos [-]Water constraints on future food production Texto completo
2012
Biemans, H.
To meet the food demand of a growing global population, agricultural production will have to more than double in this century. Agricultural land expansion combined with yield increases will therefore be required. This thesis investigates whether enough water resources will be available to sustain the future food production. Using a global scale hydrology and crop growth model, the combined effect of climate change and socio economic changes on water scarcity and food production were quantified. The first thing to explore was where water for agriculture is currently extracted. Reservoirs behind large dams are found to be very important for agriculture and contribute around 18% of the total irrigation water today. It is shown however that with current reservoir capacities and irrigation efficiencies, not enough water can be supplied to sustain an increased food production. Irrigation water shortage can lead to a loss of 20% of the irrigated crop production globally, but with important regional differences. Regions particularly at risk include basins in Southern Africa and South Asia, where production losses on irrigated cropland can become over 50%. This means that unless major investments are made towards improving irrigation efficiency and increasing storage capacity, water shortage will put a serious constraint on future food production.
Mostrar más [+] Menos [-]Water constraints on future food production
2012
Biemans, Hester