Refinar búsqueda
Resultados 181-190 de 269
The water–energy–food nexus as a tool to transform rural livelihoods and well-being in southern Africa Texto completo
2019
Mabhaudhi, Tafadzwanashe | Nhamo, Luxon | Mpandeli, S. | Nhemachena, Charles | Senzanje, Aidan | Sobratee, N. | Chivenge, Pauline P. | Slotow, R. | Naidoo, D. | Liphadzi, S. | Modi, Albert Thembinkosi
About 60% of southern Africa’s population lives in rural areas with limited access to basic services and amenities such as clean and safe water, affordable and clean energy, and balanced and nutritious diets. Resource scarcity has direct and indirect impacts on nutrition, human health, and well-being of mostly poor rural communities. Climate change impacts in the region are manifesting through low crop yields, upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). This study applied a water–energy–food (WEF) nexus analytical livelihoods model with complex systems understanding to assess rural livelihoods, health, and well-being in southern Africa, recommending tailor-made adaptation strategies for the region aimed at building resilient rural communities. The WEF nexus is a decision support tool that improves rural livelihoods through integrated resource distribution, planning, and management, and ensures inclusive socio-economic transformation and development, and addresses related sustainable development goals, particularly goals 2, 3, 6 and 7. The integrated WEF nexus index for the region was calculated at 0.145, which is marginally sustainable, and indicating the region’s exposure to vulnerabilities, and reveals a major reason why the region fails to meet its developmental targets. The integrated relationship among WEF resources in southern Africa shows an imbalance and uneven resource allocation, utilisation and distribution, which normally results from a ‘siloed’ approach in resource management. The WEF nexus provides better adaptation options, as it guides decision making processes by identifying priority areas needing intervention, enhancing synergies, and minimising trade-offs necessary for resilient rural communities. Our results identified (i) the trade-offs and unintended negative consequences for poor rural households’ livelihoods of current silo approaches, (ii) mechanisms for sustainably enhancing household water, energy and food security, whilst (iii) providing direction for achieving SDGs 2, 3, 6 and 7.
Mostrar más [+] Menos [-]The water–energy–food nexus as a tool to transform rural livelihoods and well-being in southern Africa Texto completo
2019
Mabhaudhi, T. | Nhamo, Luxon | Mpandeli, S. | Nhemachena, Charles | Senzanje, Aidan | Sobratee, N. | Chivenge, Pauline P. | Slotow, R. | Naidoo, D. | Liphadzi, S. | Modi, A.T.
About 60% of southern Africa’s population lives in rural areas with limited access to basic services and amenities such as clean and safe water, affordable and clean energy, and balanced and nutritious diets. Resource scarcity has direct and indirect impacts on nutrition, human health, and well-being of mostly poor rural communities. Climate change impacts in the region are manifesting through low crop yields, upsurge of vector borne diseases (malaria and dengue fever), and water and food-borne diseases (cholera and diarrhoea). This study applied a water–energy–food (WEF) nexus analytical livelihoods model with complex systems understanding to assess rural livelihoods, health, and well-being in southern Africa, recommending tailor-made adaptation strategies for the region aimed at building resilient rural communities. The WEF nexus is a decision support tool that improves rural livelihoods through integrated resource distribution, planning, and management, and ensures inclusive socio-economic transformation and development, and addresses related sustainable development goals, particularly goals 2, 3, 6 and 7. The integrated WEF nexus index for the region was calculated at 0.145, which is marginally sustainable, and indicating the region’s exposure to vulnerabilities, and reveals a major reason why the region fails to meet its developmental targets. The integrated relationship among WEF resources in southern Africa shows an imbalance and uneven resource allocation, utilisation and distribution, which normally results from a ‘siloed’ approach in resource management. The WEF nexus provides better adaptation options, as it guides decision making processes by identifying priority areas needing intervention, enhancing synergies, and minimising trade-offs necessary for resilient rural communities. Our results identified (i) the trade-offs and unintended negative consequences for poor rural households’ livelihoods of current silo approaches, (ii) mechanisms for sustainably enhancing household water, energy and food security, whilst (iii) providing direction for achieving SDGs 2, 3, 6 and 7.
Mostrar más [+] Menos [-]Plasma-Treated Air and Water—Assessment of Synergistic Antimicrobial Effects for Sanitation of Food Processing Surfaces and Environment Texto completo
2019
Schnabel, Uta | Handorf, Oliver | Yarova, Kateryna | Zessin, Björn | Zechlin, Susann | Sydow, Diana | Zellmer, Elke | Stachowiak, Jörg | Andrasch, Mathias | Below, Harald | Ehlbeck, Jörg
The synergistic antimicrobial effects of plasma-processed air (PPA) and plasma-treated water (PTW), which are indirectly generated by a microwave-induced non-atmospheric pressure plasma, were investigated with the aid of proliferation assays. For this purpose, microorganisms (Listeria monocytogenes, Escherichia coli, Pectobacterium carotovorum, sporulated Bacillus atrophaeus) were cultivated as monocultures on specimens with polymeric surface structures. Both the distinct and synergistic antimicrobial potential of PPA and PTW were governed by the plasma-on time (5–50 s) and the treatment time of the specimens with PPA/PTW (1–5 min). In single PTW treatment of the bacteria, an elevation of the reduction factor with increasing treatment time could be observed (e.g., reduction factor of 2.4 to 3.0 for P. carotovorum). In comparison, the combination of PTW and subsequent PPA treatment leads to synergistic effects that are clearly not induced by longer treatment times. These findings have been valid for all bacteria (L. monocytogenes > P. carotovorum = E. coli). Controversially, the effect is reversed for endospores of B. atrophaeus. With pure PPA treatment, a strong inactivation at 50 s plasma-on time is detectable, whereas single PTW treatment shows no effect even with increasing treatment parameters. The use of synergistic effects of PTW for cleaning and PPA for drying shows a clear alternative for currently used sanitation methods in production plants. Highlights: Non-thermal atmospheric pressure microwave plasma source used indirect in two different modes—gaseous and liquid; Measurement of short and long-living nitrite and nitrate in corrosive gas PPA (plasma-processed air) and complex liquid PTW (plasma-treated water); Application of PTW and PPA in single and combined use for biological decontamination of different microorganisms.
Mostrar más [+] Menos [-]Effect of Plasma-Activated Water on the Microbial Decontamination and Food Quality of Thin Sheets of Bean Curd Texto completo
2019
Yafei Zhai | Shengnan Liu | Qisen Xiang | Ying Lyu | Ruiling Shen
Thin sheets of bean curd may serve as an excellent source of nutrition for microorganisms and are therefore prone to contamination, which can be harmful to public health. This study evaluated the influence of plasma-activated water (PAW) on the microbial load and food quality of thin sheets of bean curd. Treatment for 30 min with PAW that was activated for 90 s reduced the microbial count by 1.26 and 0.91 log<sub>10</sub> CFU/g for total aerobic bacteria and total yeasts and molds on thin sheets of bean curd, respectively. The effect of PAW on microbial inactivation strongly depended on the activation time for PAW generation and the soaking time of the thin sheets of bean curd in PAW. Further, PAW could maintain total isoflavone content, sensory properties, and most of the textural properties of the thin sheets of bean curd. Although PAW treatments caused significant changes in color parameters of the thin sheets of bean curd, the appearance acceptance was not significantly influenced. This work highlights the potential application of PAW in the microbial decontamination of thin sheets of bean curd.
Mostrar más [+] Menos [-]Food component influence on water activity of low-moisture powders at elevated temperatures in connection with pathogen control Texto completo
2019
Jin, Yuqiao | Tang, Juming | Sablani, Shyam S.
Recent research has shown exponentially increased thermal resistance of pathogenic bacteria at a reduced water activity (aw) in thermal treatments. However, information on aw change as affected by food components at high temperatures is limited. The objective of this project was to quantify the influence of major food components on aw changes in low-moisture foods at elevated temperatures. Corn starch, soy protein, coconut, and cheddar cheese powders were selected as high-carbohydrate, high-protein, high-fat, and intermediate products. Vacuum dried powders were equilibrated in the jars containing saturated salt solutions to different aw from 0.11 to 0.84 at 25 °C. The aw of food powders were measured from 25 to 80 °C in hermetically sealed test cells using hight-temperature humidity sensors. For a given initial aw, high-carbohydrate product had more considerable aw increase than high-protein, intermediate, and high-fat foods with increasing temperature. The net isosteric heat of sorption increased from high-fat, intermediate, high-protein, to high-carbohydrate food at same moisture content. These relationships support findings in the literature that bacterial cells are more easily inactivated in high-carbohydrate and high-protein products than in high-fat foods. Understanding the correlation between food components and aw change at elevated temperatures helps predict the thermal resistance of bacteria in low-moisture foods.
Mostrar más [+] Menos [-]Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa Texto completo
2019
Maier, Sandra R | Kutti, Tina | Bannister, Raymond | van Breugel, Peter | van Rijswijk, Pieter | Van Oevelen, Dick
Cold‐water coral (CWC) reefs are hotspots of biodiversity and productivity in the deep sea, but their distribution is limited by the availability of food, which undergoes complex local and temporal variability. We studied the resource utilization, metabolism, and tissue storage of CWC Lophelia pertusa during an experimentally simulated 3‐day food pulse, of 13C15N‐enriched phytodetritus, followed by a 4‐week food deprivation. Oxygen consumption (0.145 μmol O2 [mmol organic carbon {OC}]−1 h−1), release of particulate organic matter (0.029 μmol particulate organic carbon [POC] [mmol OC]−1 h−1 and 0.005 μmol particulate organic nitrogen [mmol OC]−1 h−1), ammonium excretion (0.004 μmol NH4+ [mmol OC]−1 h−1), tissue C and N content, and fatty acid (FA) and amino acid composition did not change significantly during the experiment. Metabolization of the labeled phytodetritus, however, underwent distinct temporal dynamics. Initially, L. pertusa preferentially used phytodetritus‐derived C for respiration (2.2 ± 0.36 nmol C [mmol OC]−1 h−1) and mucus production (0.94 ± 0.52 nmol C [mmol OC]−1 h−1), but those tracer fluxes declined exponentially to <20% within 2 weeks after feeding and then remained stable, indicating that the remainder of the incorporated phytodetritus had entered a tissue pool with lower turnover. Analysis of 13C in individual FAs revealed a mismatch between the FAs incorporated from phytodetritus and the FA requirements of the coral. We suggest that feeding on other resources, such as lipid‐rich zooplankton, could fill this deficiency. A release of 10% of their total OC as respired C and POC during the 4‐week food deprivation underlines the importance of regular food pulses for CWC reefs. | publishedVersion
Mostrar más [+] Menos [-]LC-ESI-MS/MS determination of oxyhalides (chlorate, perchlorate and bromate) in food and water samples, and chlorate on household water treatment devices along with perchlorate in plants Texto completo
2019
Constantinou, Panayiotis | Louca-Christodoulou, Despo | Agapiou, Agapios
The results of the validation study of the LC-ESI-MS/MS method for the determination of chlorate (ClO3−), perchlorate (ClO4−) and bromate (BrO3−) in water and food samples are summarized. Towards this, 284 samples of drinking water were analysed, out of which the 69% contained chlorate above the limit of quantitation (LOQ) of 0.01 mg/L, with maximum amount of 1.1 mg/L. Only 6 samples were found to be positive with perchlorate at levels <0.01 mg/L. Bromate was detected in 5 drinking water samples at levels above the LOQ, at concentrations up to 0.026 mg/L. For the validation of the method in food, 108 blank samples were spiked with chlorate and perchlorate for the LC-MS/MS analysis at two levels. In total 247 food samples from the market of 19 different commodities including fruits, vegetables, cereals and wine, were analysed. The maximum concentration of chlorate was found at 0.83 mg/kg in a sample of cultivated mushrooms. The number of samples contaminated with perchlorate was also small, with all the determined concentrations below the LOQ of 0.05 mg/kg. Experiments for the chlorate reduction in drinking water, showed that reverse osmosis treatment is effective in particular with newly installed cartridges. Finally, according to the results of the pilot study when chlorinated water is used for the plant irrigation, accumulation of chlorate is observed, especially in the green parts of the plant. Perchlorate was also detected in leafy samples, although it was not present in the irrigation water.
Mostrar más [+] Menos [-]Modeling for Survival of Clostridium perfringens in Saeng-sik,a Powdered Ready-to-Eat Food with Low Water Activity Texto completo
2019
Park, Jin Hwa | Koo, Min Seon | Kim, Hyun Jung
Saeng-sikis a powdered ready-to-eat food with very low moisture that contains dried raw materials such as grains, fruits,mushrooms, and seaweeds. This product is consumed as a convenient and nutritious meal replacement. The objective of this study was to develop a mathematical model for predicting the survival of Clostridium perfringens vegetative cells and spores in saeng-sikas a function of temperature and to validate the model using saeng-siksamples with different microbial communities analyzed by matrix-assisted laser desorptionionization time-of-flight mass spectrometry. Kinetic data for C. perfringens survival in saeng-sikfit well to the Weibull model with high goodness off it (R(2) = 0.92 to 0.98). The obtained δ values (required time for first decimal reduction) for each temperature were 19.62 to 864.86 h, and concave curves (p < 1) were observed under all experimental conditions (5 to 40 degree C). Kinetic parameters were further described in a secondary model as a function of temperature using a Davey model (R(2) =0.99). The developed model was validated by the bias factor, accuracy factor, and root mean square error, and the values were within acceptable ranges for predictive models, even for saeng-sik samples with different microbial communities. When saeng-sikwas rehydrated according to the manufacturer’s recommendations, germination and outgrowth of C. perfringens was observed when the sample was subjected to unusual temperatures during storage, such as at 30 degree C for 15 h. C. perfringens spores survived in saeng-sik with very low water activity. Because C. perfringens could germinate and grow under such conditions, care must be taken to avoid initial contamination of C. perfringens during the manufacturing process. Our model developed with samples with different microbial communities provides useful information for next-generation microbiological risk assessment taking into consideration the ecology of the food-associated microbial community.
Mostrar más [+] Menos [-]A comparison of the Mediterranean diet and current food consumption patterns in Spain from a nutritional and water perspective Texto completo
2019
Blas, Alejandro | Garrido, Alberto | Ünver, İ. H. Olcay | Willaarts, Bárbara
The promotion of responsible consumption is a key strategy to achieve environmental benefits, sustainable food security, and enhance public health. Countries like Spain are making efforts to reverse growing obesity and promote healthy diets, such as the recommended and traditional Mediterranean, recognized as a key strategy to improve the population's health with locally grown, traditional, and seasonal products like fruits, vegetables, olive oil, and fish. With a view to connecting water, agriculture, food security, nutrition and health, this research aims to investigate and compare the nutritional and water implications of the current food consumption of Spanish households with the recommended Mediterranean diet. Besides, we calculate their nutritional composition, compare their water footprints, and develop a new methodological approach to assess nutritional water productivity (i.e. the nutritional value per unit of embedded water). Results show that the current Spanish diet is shifting away from the recommended Mediterranean towards an alternative one containing three times more meat, dairy and sugar products, and a third fewer fruits, vegetables, and cereals. The Mediterranean diet is also less caloric, as it contains smaller amounts of proteins and fats and is richer in fiber and micronutrients. Due to the high-embedded water content in animal products, a shift towards a Mediterranean diet would reduce the consumptive WF about 750 l/capita day. Additionally, the Mediterranean diet has better water-nutritional efficiency than the current one: it provides more energy, fiber, and nutrients per liter of consumptive water. The study confirms the Mediterranean diet is a healthier and more sustainable diet with strong cultural heritage.
Mostrar más [+] Menos [-]Impact of spatial variations in water quality and hydrological factors on the food-web structure in urban aquatic environments Texto completo
2019
Zhao, C.S. | Yang, Y. | Yang, S.T. | Xiang, H. | Wang, F. | Chen, X. | Zhang, H.M. | Yu, Q.
Global aquatic ecosystems are essential to human existence and have deteriorated seriously in recent years. Understanding the influence mechanism of habitat variation on the structure of the food-web allows the effective recovery of the health of degraded ecosystems. Whereas most previous studies focused on the selection of driving habitat factors, the impact of habitat variation on the food-web structure was rarely studied, resulting in the low success rate of ecosystem restoration projects globally. This paper presents a framework for exploring the effects of spatial variations in water quality and hydrological habitat factors on the food-web structure in city waters. Indices for the evaluation of the food-web structure are first determined by integrating model-parameter extraction via literature refinement. The key water quality and hydrological factors are then determined by coupling canonical correspondence analysis with partial least squares regression. Their spatial variation is investigated using spatial autocorrelation. Finally, fuzzy clustering is applied to analyze the influence of the spatial variations in water quality and hydrological factors on the food-web structure. The results obtained in Ji'nan, the pilot city of water ecological civilization in China, show that the Shannon diversity index, connectance index, omnivory index, and the ratio of total primary production to the total respiration are important indicators of food-web structural change. They show that the driving factors affecting the aquatic food-web structure in Ji'nan are hydrological factors (e.g., river width, water depth, and stream flow), physical aspects of water quality (e.g., air temperature, water temperature, electrical conductivity, and transparency), and chemical aspects (e.g., potassium, dissolved oxygen, calcium, and total hardness). They also show that the stability of the food-web is more prone to spatial variations in water quality than in hydrological factors. Higher electrical conductivity, potassium, total hardness, and air temperature lead to deteriorated food-web structures, whereas better transparency improves structure and stability. We found that water and air temperature are the most important factors in the spatial variation of the food-web structure in the study area, followed by total hardness. Transparency is the least important factor. Large disparities and varied spatial distributions exist in the driving effects of water quality and hydrological factors across regions attributable to differences in geographical environments, water salinity (fresh vs. sea water), and environmental factors (e.g., water pollution). The above methods and results serve as a theoretical and scientific basis for a high success rate of aquatic ecosystem restoration projects in the study area and other cities worldwide.
Mostrar más [+] Menos [-]