Refinar búsqueda
Resultados 1-3 de 3
Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China | Pergélisol et eau de nappe sur le Plateau Qinghai-Tibet et dans le Nord-Est de la Chine Permafrost y agua subterránea en el Qinghai-Tibet Plateau y en el noreste de China 中国青藏高原和东北地区的多年冻土和地下水 Permafrost e águas subterrâneas no planalto de Qinghai-Tibete e no nordeste da China Texto completo
2013
Cheng, Guodong | Jin, Huijun
The areal extent of permafrost in China has been reduced by about 18.6 % during the last 30 years. Due to the combined influences of climate warming and human activities, permafrost has been degrading extensively, with marked spatiotemporal variability. Distribution and thermal regimes of permafrost and seasonal freeze-thaw processes are closely related to groundwater dynamics. Permafrost degradation and changes in frost action have extensively affected cold-regions hydrogeology. Progress on some research programs on groundwater and permafrost in two regions of China are summarized. On the Qinghai-Tibet Plateau and in mountainous northwest China, permafrost is particularly sensitive to climate change, and the permafrost hydrogeologic environment is vulnerable due to the arid climate, lower soil-moisture content, and sparse vegetative coverage, although anthropogenic activities have limited impact. In northeast China, permafrost is thermally more stable due to the moist climate and more organic soils, but the presence or preservation of permafrost is largely dependent on favorable surface coverage. Extensive and increasing human activities in some regions have considerably accelerated the degradation of permafrost, further complicating groundwater dynamics. In summary, permafrost degradation has markedly changed the cold-regions hydrogeology in China, and has led to a series of hydrological, ecological, and environmental problems of wide concern.
Mostrar más [+] Menos [-]Revue : De la conceptualisation multi-échelles à un système de classification des écosystèmes continentaux dépendant des eaux souterraines Revisión: De una conceptualización multiescala a un sistema de clasificación para ecosistemas dependientes de agua subterránea interior 综述:对内陆依赖地下水的生态系统的多尺度概念化及分类系统 Revisão: Da conceptualização multi-escala para um sistema de classificação de ecossistemas interiores dependentes de águas subterrâneas | Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems Texto completo
2012
Bertrand, Guillaume | Goldscheider, Nico | Gobat, Jean-Michel | Hunkeler, Daniel
Aquifers provide water, nutrients and energy with various patterns for many aquatic and terrestrial ecosystems. Groundwater-dependent ecosystems (GDEs) are increasingly recognized for their ecological and socio-economic values. The current knowledge of the processes governing the ecohydrological functioning of inland GDEs is reviewed, in order to assess the key drivers constraining their viability. These processes occur both at the watershed and emergence scale. Recharge patterns, geomorphology, internal geometry and geochemistry of aquifers control water availability and nutritive status of groundwater. The interface structure between the groundwater system and the biocenoses may modify the groundwater features by physicochemical or biological processes, for which biocenoses need to adapt. Four major types of aquifer-GDE interface have been described: springs, surface waters, peatlands and terrestrial ecosystems. The ecological roles of groundwater are conditioned by morphological characteristics for spring GDEs, by the hyporheic zone structure for surface waters, by the organic soil structure and volume for peatland GDEs, and by water-table fluctuation and surface floods in terrestrial GDEs. Based on these considerations, an ecohydrological classification system for GDEs is proposed and applied to Central and Western-Central Europe, as a basis for modeling approaches for GDEs and as a tool for groundwater and landscape management.
Mostrar más [+] Menos [-]Noble gas and isotope geochemistry in western Canadian Arctic watersheds: tracing groundwater recharge in permafrost terrain | Gaz rares et géochimie isotopique sur des bassins versants de l’Arctique Canadien : traçage de recharge de nappe dans le permafrost Gases nobles y geoquímica isotópica en cuencas del Ártico Occidental de Canadá: trazadores de recarga de agua subterránea en terrenos permafrost 稀有气体和同位素地球化学应用于加拿大西部寒区流域:示踪多年冻土地带地下水补给 Geoquímica isotópica e de gases nobres em bacias hidrográficas do Ártico Canadiano ocidental: traçagem da recarga de águas subterrâneas em terrenos de permafrost Texto completo
2013
Utting, Nicholas | Lauriol, Bernard | Mochnacz, Neil | Aeschbach-Hertig, Werner | Clark, Ian
In Canada’s western Arctic, perennial discharge from permafrost watersheds is the surface manifestation of active groundwater flow systems with features including the occurrence of year-round open water and the formation of icings, yet understanding the mechanisms of groundwater recharge and flow in periglacial environments remains enigmatic. Stable isotopes (δ¹⁸O, δD, δ¹³CDIC), and noble gases have proved useful to study groundwater recharge and flow of groundwater which discharges along rivers in Canada’s western Arctic. In these studies of six catchments, groundwater recharge was determined to be a mix of snowmelt and precipitation. All systems investigated show that groundwater has recharged through organic soils with elevated PCO₂, which suggests that recharge occurs largely during summer when biological activity is high. Noble gas concentrations show that the recharge temperature was between 0 and 5 °C, which when considered in the context of discharge temperatures, suggests that there is no significant imbalance of energy flux into the subsurface. Groundwater circulation times were found to be up to 31 years for non-thermal waters using the ³ H-³He method.
Mostrar más [+] Menos [-]