Affiner votre recherche
Résultats 1-10 de 16
Exposure of androgen mimicking environmental chemicals enhances proliferation of prostate cancer (LNCaP) cells by inducing AR expression and epigenetic modifications
2021
Singh, Vipendra Kumar | Pal, Rajesh | Srivastava, Priyansh | Misra, Gauri | Shukla, Yogeshwer | Sharma, Pradeep Kumar
Exposure to environmental endocrine disrupting chemicals (EDCs) is highly suspected in prostate carcinogenesis. Though, estrogenicity is the most studied behavior of EDCs, the androgenic potential of most of the EDCs remains elusive. This study investigates the androgen mimicking potential of some common EDCs and their effect in androgen-dependent prostate cancer (LNCaP) cells. Based on the In silico interaction study, all the 8 EDCs tested were found to interact with androgen receptor with different binding energies. Further, the luciferase reporter activity confirmed the androgen mimicking potential of 4 EDCs namely benzo[a]pyrene, dichlorvos, genistein and β-endosulfan. Whereas, aldrin, malathion, tebuconazole and DDT were reported as antiandrogenic in luciferase reporter activity assay. Next, the nanomolar concentration of androgen mimicking EDCs (benzo[a]pyrene, dichlorvos, genistein and β-endosulfan) significantly enhanced the expression of AR protein and subsequent nuclear translocation in LNCaP cells. Our In silico studies further demonstrated that androgenic EDCs also bind with epigenetic regulatory enzymes namely DNMT1 and HDAC1. Moreover, exposure to these EDCs enhanced the protein expression of DNMT1 and HDAC1 in LNCaP cells. These observations suggest that EDCs may regulate proliferation in androgen sensitive LNCaP cells by acting as androgen mimicking ligands for AR signaling as well as by regulating epigenetic machinery. Both androgenic potential and epigenetic modulatory effects of EDCs may underlie the development and growth of prostate cancer.
Afficher plus [+] Moins [-]Hypoxia modifies the response to flutamide and linuron in male three-spined stickleback (Gasterosteus aculeatus)
2020
Fitzgerald, Jennifer A. | Trznadel, Maciej | Katsiadaki, Ioanna | Santos, Eduarda M.
Hypoxia is a major stressor in aquatic environments and it is frequently linked with excess nutrients resulting from sewage effluent discharges and agricultural runoff, which often also contain complex mixtures of chemicals. Despite this, interactions between hypoxia and chemical toxicity are poorly understood. We exposed male three-spined stickleback during the onset of sexual maturation to a model anti-androgen (flutamide; 250 μg/L) and a pesticide with anti-androgenic activity (linuron; 250 μg/L), under either 97% or 56% air saturation (AS). We assessed the effects of each chemical, alone and in combination with reduced oxygen concentration, by measuring the transcription of spiggin in the kidney, as a marker of androgen signalling, and 11 genes in the liver involved in some of the molecular pathways hypothesised to be affected by the exposures. Spiggin transcription was strongly inhibited by flutamide under both AS conditions. In contrast, for linuron, a strong inhibition of spiggin was observed under 97% AS, but this effect was supressed under reduced air saturation, likely due to interactions between the hypoxia inducible factor and the aryl hydrocarbon receptor (AhR) pathways. In the liver, hypoxia inducible factor 1α was induced following exposure to both flutamide and linuron, however this was independent of the level of air saturation. This work illustrates the potential for interactions between hypoxia and pollutants with endocrine or AhR agonist activity to occur, with implications for risk assessment and management.
Afficher plus [+] Moins [-]Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity
2017
Lv, Xuan | Pan, Liumeng | Wang, Jiaying | Lü, Liping | Yan, Weilin | Zhu, Yanye | Xu, Yiwen | Guo, Ming | Zhuang, Shulin
Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.
Afficher plus [+] Moins [-]Exposure of juvenile turbot (Scophthalmus maximus) to silver nanoparticles and 17α-ethinylestradiol mixtures: Implications for contaminant uptake and plasma steroid hormone levels
2017
Farkas, Júlia | Salaberria, Iurgi | Styrishave, Bjarne | Staňková, Radka | Ciesielski, Tomasz M. | Olsen, Anders J. | Posch, Wilfried | Flaten, Trond P. | Krøkje, Åse | Salvenmoser, Willi | Jenssen, Bjørn M.
Combined exposure to engineered nanoparticles (ENPs) and anthropogenic contaminants can lead to changes in bioavailability, uptake and thus effects of both groups of contaminants. In this study we investigated effects of single and combined exposures of silver (Ag) nanoparticles (AgNPs) and the synthetic hormone 17α-ethinylestradiol (EE2) on tissue uptake of both contaminants in juvenile turbot (Scophthalmus maximus). Silver uptake and tissue distribution (gills, liver, kidney, stomach, muscle and bile) were analyzed following a 14-day, 2-h daily pulsed exposure to AgNPs (2 μg L⁻¹ and 200 μg L⁻¹), Ag⁺ (50 μg L⁻¹), EE2 (50 ng L⁻¹) and AgNP + EE2 (2 or 200 μg L⁻¹+50 ng L⁻¹). Effects of the exposures on plasma vitellogenin (Vtg) levels, EE2 and steroid hormone concentrations were investigated. The AgNP and AgNP + EE2 exposures resulted in similar Ag concentrations in the tissues, indicating that combined exposure did not influence Ag uptake in tissues. The highest Ag concentrations were found in gills. For the Ag⁺ exposed fish, the highest Ag concentrations were measured in the liver. Our results show dissolution processes of AgNPs in seawater, indicating that the tissue concentrations of Ag may partly originate from ionic release. Plasma EE2 concentrations and Vtg induction were similar in fish exposed to the single contaminants and the mixed contaminants, indicating that the presence of AgNPs did not significantly alter EE2 uptake. Similarly, concentrations of most steroid hormones were not significantly altered due to exposures to the combined contaminants versus the single compound exposures. However, high concentrations of AgNPs in combination with EE2 caused a drop of estrone (E1) (female fish) and androstenedione (AN) (male and female fish) levels in plasma below quantification limits. Our results indicate that the interactive effects between AgNPs and EE2 are limited, with only high concentrations of AgNPs triggering synergistic effects on plasma steroid hormone concentrations in juvenile turbots.
Afficher plus [+] Moins [-]Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones
2013
Rodriguez-Navas, Carlos | Björklund, Erland | Halling-Sørensen, Bent | Hansen, Martin
In this study we evaluate and demonstrate the occurrence of nine natural and one synthetic steroid hormone, including estrogens, androgens and progestagens in biogas final digestate byproduct (digestion liquid) commonly used as an agricultural fertilizer. We investigated two biogas sites that utilize different anaerobic digestion technologies (mesophilic and thermophilic) from swine manure and other organic wastes. Individual hormone concentration levels were observed up to 1478 ng g−1 dry weight or 22.5 mg kg−1 N with estrone and progesterone reaching highest concentration levels. Evaluation of the potential environmental burden through the application in agriculture was also assessed on the basis of predicted environmental concentrations. This study indicates that the biogas digestion process does not completely remove steroid hormones from livestock manure and use of final digestate byproduct on croplands contributes to the environmental emission of hormones.
Afficher plus [+] Moins [-]The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor
2020
Park, Choa | Song, Heewon | Choi, Junyeong | Sim, Seunghye | Kojima, Hiroyuki | Park, Joonwoo | Iida, Mitsuru | Lee, Youngjoo
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
Afficher plus [+] Moins [-]Relationships between POPs, biometrics and circulating steroids in male polar bears (Ursus maritimus) from Svalbard
2017
Ciesielski, Tomasz M. | Hansen, Ingunn Tjelta | Bytingsvik, Jenny | Hansen, Martin | Lie, Elisabeth | Aars, Jon | Jenssen, Bjørn M. | Styrishave, Bjarne
The aim of this study was to determine the effect of persistent organic pollutants (POPs) and biometric variables on circulating levels of steroid hormones (androgens, estrogens and progestagens) in male polar bears (Ursus maritimus) from Svalbard, Norway (n = 23). Levels of pregnenolone (PRE), progesterone (PRO), androstenedione (AN), dehydroepiandrosterone (DHEA), testosterone (TS), dihydrotestosterone (DHT), estrone (E1), 17α-estradiol (αE2) and 17β-estradiol (βE2) were quantified in polar bear serum by gas chromatography tandem mass spectrometry (GC-MS/MS), while POPs were measured in plasma. Subsequently, associations between hormone concentrations (9 steroids), POPs (21 polychlorinated biphenyls (PCBs), 8 OH-PCBs, 8 organochlorine pesticides (OCPs) and OCP metabolites, and 2 polybrominated diphenyl ethers (PBDEs)) and biological variables (age, head length, body mass, girth, body condition index), capture date, location (latitude and longitude), lipid content and cholesterol levels were examined using principal component analysis (PCA) and orthogonal projections to latent structures (OPLS) modelling. Average concentrations of androgens, estrogens and progestagens were in the range of 0.57–83.7 (0.57–12.4 for subadults, 1.02–83.7 for adults), 0.09–2.69 and 0.57–2.44 nmol/L, respectively. The steroid profiles suggest that sex steroids were mainly synthesized through the Δ-4 pathway in male polar bears. The ratio between androgens and estrogens significantly depended on sexual maturity with androgen/estrogen ratios being approximately 60 times higher in adult males than in subadult males. PCA plots and OPLS models indicated that TS was positively related to biometrics, such as body condition index in male polar bears. A negative relationship was also observed between POPs and DHT. Consequently, POPs and body condition may potentially affect the endocrinological function of steroids, including development of reproductive tissues and sex organs and the general condition of the male polar bears.
Afficher plus [+] Moins [-]Can pharmaceuticals interfere with the synthesis of active androgens in male fish? An in vitro study
2011
Fernandes, Denise | Schnell, Sabine | Porte, Cinta
The in vitro interference of fibrate (gemfibrozil, clofibrate, clofibric acid), anti-inflammatory (ibuprofen, diclofenac), and anti-depressive (fluoxetine, fluvoxamine) drugs with key enzymatic activities—C17,20-lyase and CYP11β-involved in the synthesis of active androgens in gonads of male carp have been investigated. Among the tested compounds, fluvoxamine and fluoxetine were the strongest inhibitors of C17,20-lyase and CYP11β enzymes, with IC50s in the range of 321–335μM and 244–550μM, respectively. To our knowledge this is the first report on the interaction of pharmaceutical compounds with enzymatic systems involved in the synthesis of oxy-androgens. As oxy-androgens are known to influence spermatogenesis and stimulate reproductive behavior and secondary sexual characteristics in male fish, this work highlights the need for further investigating these endpoints when designing specific in vivo studies to assess the endocrine disruptive effect of pharmaceuticals in fish.
Afficher plus [+] Moins [-]Adverse effect of rheumatoid arthritis on male Wistar rat’s fertility: protective role of Costus extract [Erratum: February 2022, v.29(6); p.9386-9387]
2022
Kamel, Samar | Tag, Hend M. | Ebeid, Hala | Khaled, Howayda E. | Almallah, Amani A | El-Naggar, Mohamed S.
Rheumatoid arthritis (RA) is a systemic autoimmune complaint. Advanced treatments resort to the traditional herbal therapy. The aim of this study is to assess the protective effect of Costus extract on the fertility of male rats with Freund’s adjuvant-induced rheumatoid arthritis. Thirty male adult Wistar rats (190–200 g) were divided into six groups. They were subdivided into three groups; group I was the control group that received distilled water, and groups II and III received two various doses of Costus extract (200 and 400 mg/kg, respectively) for 60 days. Another three groups were subjected to RA induction via Freund’s adjuvant. Rats were injected a dose of 0.1 ml of Freund’s complete adjuvant (FCA) in the planter area of the left hind paw and then subdivided into 3 groups. Group I of RA-induced rats were given distilled water. The other two groups were given orally (200 and 400 mg/kg dosage of extract, respectively) from the 2nd day of RA induction for 60 days. Sex organ relative weight, sperm concentration assay, testicular histopathology and immunohistochemistry of androgen receptors, TNF α, and BAX protein were determined. The results showed that RA caused a significant decrease in the relative weight of sex organs and sperm count, which were relatively improved by doses of Costus (200, 400 mg/kg). RA induction caused testicular degeneration which markedly enhanced with Costus treatment as shown in histopathological sections. RA caused a reduction in %IHC of androgen receptors and increased expression level of both TNF α and BAX protein. Using IHC, it was revealed that RA caused a reduction in the expression level of androgen receptors and an increase in the expression of both TNF α and BAX protein. We can conclude that Costus speciosus had a potentially valuable role in improving fertility disorders caused by RA.
Afficher plus [+] Moins [-]Integration of in silico methods to determine endocrine-disrupting tobacco pollutants binding potency with steroidogenic genes: comprehensive QSAR modeling and ensemble docking strategies
2022
Kumar Konidala, Kranthi | Bommu, Umadevi | Pabbaraju, Neeraja
A myriad of tobacco-associated chemicals may have possibilities to developmental/reproductive axis and endocrine-disruption impacts. Mostly they breach the biotransformation of cholesterol in mitochondria by interfering with steroidogenic pathway genes, prompting to adverse effects in steroid biosynthesis; however, studies are scanty. The quantitative structure–activity relationship (QSAR) modeling and comparative docking strategies were used to understand structural features of dataset compounds that influence developmental/reproductive toxicity and estrogen and androgen receptor–binding abilities, and to predict binding levels of toxicants with steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1) active sites. Developed QSAR models presented good robustness and predictive ability that were determined from the applicability domain and, clustering and classification of chemicals by performing self-organizing maps. Accordingly, the exorbitant amount of polycyclic aromatic hydrocarbons (PAHs) and a limited number of other chemicals including N-nitrosamines and nicotine was represented as potential developmental/reproductive toxicants as well as estrogen and androgen receptor binders. From the docking analysis, hydrogen bonding, nonpolar, atomic π-stacking, and π-cation interactions were found between PAHs (bay and fjord structural pockets) and functional hotspot residues of StAR and CYP11A1, which strengthened the subtle structural changes at domains. These govern barrier effects to cholesterol binding and/or locking cholesterol to complicate its ejection from the Ω1 loop of StAR, and further mitigates steroid biosynthesis through cholesterol by CYP11A1; therefore, they are presumably considered as block-cluster mechanisms. These outcomes are significant to be hopeful to estimate developmental/reproductive toxicity and endocrine-disruption activities of other environmental pollutants, and could be useful for further assessment to discover binding mechanisms of PAHs with other steroidogenesis pathway genes.
Afficher plus [+] Moins [-]