Affiner votre recherche
Résultats 1-10 de 13
Arc and pulsed spark discharge inactivation of pathogenic P. aeruginosa, S. aureus, M. canis, T. mentagrophytes, and C. albicans microorganisms
2022
Rasouli, Milad | Amini, Maryam | Khandan, Saeed | Ghoranneviss, Mahmood | Nikmaram, Hamed | Ostrikov, Kostya Ken
There is a strong and ever-escalating need for sterilization tools that are effective against a broad range of pathogenic microorganisms. To address this issue, this study evaluates the inactivation potential of arc and pulsed spark plasma discharges on Pseudomonas aeruginosa, Staphylococcus aureus, Microsporum canis, Trichophyton mentagrophytes, and Candida albicans microorganisms. Our results show that the electrical discharge plasma systems are effective in the inactivation of pathogenic microorganisms. The inactivation of the considered strains was greatly affected by the type of microorganisms. Higher viability losses of the pathogenic strains were observed in bacterial strains than in the fungal strains. Moreover, in the case of fungal strains, the population of C. albicans was decreased the most, followed by Trichophyton mentagrophyte, while the population of Microsporum canis was decreased the least. Besides, the arc discharge system was compared with the pulsed spark discharge system. It can be obtained from the results that the pulsed spark discharge treatment successfully enhanced the reduction of the pathogenic cells more than the arc discharge treatment. The higher efficiency of the pulsed spark discharge is due to the generation of discharge streamers on the water surface. The SEM analyses showed that electrical discharge plasmas produced serious damage to pathogenic eukaryotic and prokaryotic microorganisms. Also, the plasma-induced changes in pH values and temperature values were measured. The pulsed spark discharge-treated samples have more significant changes in pH value while arc discharge-treated samples have larger temperature changes.
Afficher plus [+] Moins [-]In Situ Evaluation of Filter Media Modified by Biocidal Nanomaterials to Control Bioaerosols in Internal Environments
2021
de Freitas Rosa Remiro, Paula | de Sousa, Cristina Paiva | Alves, Henrique Cezar | Bernardo, André | Aguiar, Mônica Lopes
Controlling the bioaerosol present in indoor environments has been evidenced to be extremely necessary. An alternative is to develop filter media for air conditioners that have biocidal properties. This study aimed to verify the biocidal effect of a high-efficiency particulate air (HEPA) filter medium modified with the deposition of nanoparticles on its surface. For this purpose, Ag, TiO₂, and Ag/TiO₂ nanoparticles were used and the antimicrobial activities of these nanomaterials against Escherichia coli, Staphylococcus aureus, and Candida albicans microorganisms were evaluated, as well as the biocidal efficacy of the modified HEPA filter with these nanomaterials in a real environment. The percentages of elimination obtained for the Ag, TiO₂, and Ag/TiO₂ nanomaterials, respectively, were 53%, 63%, and 68% (E. coli); 67%, 67%, and 69% (S. aureus); and 68%, 73%, and 75% (C. albicans). The HEPA filter media had their surfaces modified by aspersion and deposition of Ag, TiO₂, and Ag/TiO₂ nanomaterials. We could conclude that the nanoparticles adhered to the filter medium do not affect its permeability. The modified filters were arranged in an internal environment (bathroom) for the collection of the bioaerosols, and after the collection, the filter cake was plated and arranged to grow in a liquid medium. The results showed that the filters have 100% of biocidal action in passing air, and 55.6%, 72.2%, and 81% of inhibition to microbial growth in their surface for modification with Ag, TiO₂, and Ag/TiO₂, respectively, compared to unmodified filters.
Afficher plus [+] Moins [-]In vitro antioxidant, antibacterial, and antihyperlipidemic potential of ethanolic Avicennia marina leaves extract supported by metabolic profiling
2021
Yassien, Eman E. | Hamed, Moaz M. | Abdelmohsen, Usama Ramadan | Hassan, Hanaa M. | Gazwi, Hanaa S. S.
This study aimed to examine the impact of ethanolic Avicennia marina (A. marina) leaves extract against seven pathogenic bacteria and the protective effect of this plant against hyperlipidemia caused by dexamethasone (DEX)-treated rats. Forty-eight male rats weighing between 150 and 200 g were randomly selected into six groups containing eight rats in each group. Moreover, in vitro antioxidant DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical scavenging activity, FRAP (ferric reducing antioxidant power), and ABTS assay were also analyzed for leaf extract. Results showed that the IC₅₀ values were observed as 193.9 ± 1.03 μg/mL, 340.29 ± 8.16 μM TE/mg, and 326.8 ± 6.14 μM TE/mg for DPPH, FRAP, and ABTS radical scavenging activities, respectively. A. marina leaves ethanolic extract exhibited higher activity against Candida albicans and Bacillus subtilis, moderate activity against Salmonella typhimurium, and Vibrio damsel. The administration of DEX resulted in significant (P < 0.05) increase in the levels of MDA concentration, TG, TC, LDL, LDH, and glucose but decreased significantly in HDL. Treatment with A. marina extract positively reversed the distorted lipid profile and peroxidation and improved MDA, GSH, NO, and SOD activities in DEX-administered rats. Histological investigation of liver tissue sections showed that the treatment with A. marina leaves extract moderate the fatty change caused by DEX. It is concluded that A. marina leaves extract improved the hypolipidemic property of DEX administration in comparison with standard treatment with atorvastatin.
Afficher plus [+] Moins [-]Radiation-induced synthesis of copper sulfide nanotubes with improved catalytic and antibacterial activities
2021
Bekhit, Mohamad | Abo El Naga, Ahmed O. | El Saied, Mohamed | Abdel Maksoud, Mohamed I. A.
In the current paper, copper sulfide nanotubes have been successfully synthesized via the green, simple, and effective gamma-radiolysis method without adding any capping or reducing agents. The structural and morphological characteristics of the as-prepared CuS nanotubes were investigated by X-ray diffraction (XRD), N₂ adsorption-desorption measurements at 77 K, transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) spectroscopy, which all demonstrated the formation of pure CuS covellite phase with tubular morphology. The synthesized CuS nanotubes possessed not only high activity towards the reduction of both cationic (methylene blue) and anionic (Congo red) dyes in the presence of NaBH₄ but also exhibited excellent reusability. In addition, the pseudo-first-order kinetic model represented the reduction of MB very well, and the value of the normalized rate constant (2.4 × 10⁻² s⁻¹ mg⁻¹) was higher than those of other solid catalysts reported in the literature. Ultimately, CuS nanotubes were found to have a broad-spectrum microbicidal action against the common microbiota, such as Gram-positive (exemplified by Bacillus subtilis and Staphylococcus aureus), Gram-negative bacteria (exemplified by Pseudomonas aeruginosa and Escherichia coli), yeast (exemplified by Candida albicans), and plant pathogenic fungi (exemplified by Aspergillus niger).
Afficher plus [+] Moins [-]Chemical diversity and biological activities of essential oils from native populations of Clinopodium menthifolium subsp. ascendens (Jord.) Govaerts
2021
Debbabi, Haïfa | El Mokni, Ridha | Nardoni, Simona | Chaieb, Ikbal | Maggi, Filippo | Nzekoue, Franks Kamgang | Caprioli, Giovanni | Hammami, Saoussen
This study is focused on the analysis of regional variation of the chemical compositions of three Clinopodium menthifolium subsp. ascendens (Jord.) Govaerts Tunisian accession, as well as their inhibition toward fungi and insect pests. The diversity of the chemical constituents and biological activities in front of the aforementioned variations was found to be remarkable. Essential oils were obtained by hydrodistillation of the aerial parts and analyzed by gas chromatography-mass spectrometry (GC-MS). A total of 41, 42, and 30 compounds were identified respectively from Clinopodium menthifolium essential oils harvested from three Tunisian regions, namely Ain-Draham (ADEO), Babouch (BEO), and Tabarka (TEO). All analyzed oils were rich in oxygenated monoterpenes with different major constituents. Piperitenone (34.5%), cis-piperitone oxide (26.1%), and pulegone (47.9%) were the dominant compounds in the three volatile oils, respectively. The antifungal activity was investigated in vitro using six targeted fungal strains (Aspergillus flavus, Aspergillus terreus, Candida albicans, Microsporum canis, Microsporum gypseum, and Trichophyton mentagrophytes). The toxicity and repellency of essential oils were evaluated against the stored product pest Tribolium confusum. The tested samples were differently effective toward the target fungi and the pest depending on the variability of their chemical compositions. BEO exhibited the highest fungitoxic properties toward A. terreus mold, M. canis dermatophyte, and C. albicans yeast (the MIC values ranged from 40 to 400 μg mL⁻¹). In addition, the data showed that TEO repelled T. confusum moderately (PR = 42.5% at 2 h after exposure). Concerning the contact treatment, both ADEO and BEO were proved to possess slightly toxic effects toward T. confusum pest (% of mortality 27.5–32.5% at 5% concentration). The results showed that the geographic origin greatly influenced the chemical composition and the associated bioactivities of Clinopodium menthifolium subsp. ascendens.
Afficher plus [+] Moins [-]Reduced ecotoxicity and improved biodegradability of cationic biocides based on ester-functionalized pyridinium ionic liquids
2019
Trush, Maria | Metelytsia, Larysa | Semenyuta, Ivan | Kalashnikova, Larysa | Papeykin, Oleksiy | Venger, Irina | Tarasyuk, Oksana | Bodachivska, Larysa | Blagodatnyi, Volodymyr | Rogalsky, Sergiy
Ester-functionalized pyridinium ionic liquids (ILs), 1-decyloxycarbonylmethylpyridinium chloride (PyrСOOC₁₀-Cl), and 1-dodecyloxycarbonylmethylpyridinium chloride (PyrСOOC₁₂-Cl) have been synthesized and studied for their environmental toxicity. Simple long-chain pyridinium ILs, 1-dodecylpyridinium chloride (PyrC₁₂-Cl), and commercial disinfectant cetylpyridinium chloride (CPC) were used as reference compounds. Both ester-functionalized ILs and CPC showed significantly reduced antibacterial activity compared to PyrC₁₂-Cl. However, ester-functionalized ILs were found to have excellent antifungal activity towards Candida albicans fungus strains, similar to PyrC₁₂-Cl and much higher than for CPC. The molecular docking of ILs in the active site of the known antifungal target N-myristoyltransferase (Nmt) C. albicans has been conducted. The obtained results indicate the possibility of ILs binding into the Nmt pocket. The high stability of the complexes, especially for PyrCOOC₁₀-Cl, is ensured by hydrogen bonding, electrostatic anion-pi interactions, as well as hydrophobic pi-alkyl and alkyl interactions that was confirmed by calculated binding energy values. The acute toxicity studies of ester-functionalized ILs on D. rerio (zebrafish) hydrobiont have shown their dramatically reduced ecotoxicity compared to PyrC₁₂-Cl and CPC. Thus, LD₅₀ values of 15.2 mg/L and 16.8 mg/L were obtained for PyrCOOC₁₀-Cl and PyrCOOC₁₂-Cl, respectively, whereas CPC had LD₅₀ value of 0.018 mg/L. The primary biodegradation test CEC L-33-A93 of ILs indicated an improved biodegradability of ester-functionalized compounds compared to simple long-chain ILs. Based on the obtained results, PyrCOOC₁₀-Cl may be considered as very promising cationic biocide due to the combination of soft antimicrobial activity and reduced ecotoxicity, as well as improved biodegradability.
Afficher plus [+] Moins [-]Bioremediation of a Benzo[a]Pyrene-Contaminated Soil Using a Microbial Consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp
2015
Waszak, Dafne Q. | da Cunha, Ana Cristina B. | Agarrallua, Marcio R. A. | Goebel, Cristine S. | Sampaio, Carlos H.
Many studies have been conducted regarding the degradation of PAHs. One of the technologies that has been widely used is bioremediation due to its relatively low cost and greater efficiency for those compounds with structural complexity. Biotechnology has been used in several countries for many years and consists in the use of microorganisms (bacteria and fungi) to transform contaminants into inert substances, which is a result of the microbial activity from biochemical processes. This study aimed to develop a bioremediation methodology for the pollutant benzo[a]pyrene (B[a]P), which belongs to the group of PAHs. The potential use of a microbial consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp. for bioremediation was assessed. To confirm the pollutant reduction, quantifications of the samples were performed via gas chromatography–mass spectrometry (GC-MS). The contamination was prepared with a soil previously contaminated with B[a]P at the concentration of 3.74 mg kg⁻¹. The microbial consortium was added (16 μL g⁻¹), and samples were incubated for 42 days in an oven at 35 °C. The microbial growth curves showed representative differences between the samples in the presence and absence of the pollutant, demonstrating the possibility of bioremediation process. The final quantification of soil showed a mean concentration of 1.29 mg kg⁻¹, showed that 65.51 ± 0.95 % of the pollutant was degraded, which is an important and representative performance.
Afficher plus [+] Moins [-]Hybrid UV-C/microfiltration process in membrane photoreactor for wastewater disinfection
2019
Rodríguez-Chueca, Jorge | Mesones, Sandra | Marugán, Javier
A novel hybrid UV-C/microfiltration process for water disinfection is presented, and its application in continuous mode operation to the removal of different pathogen germs (Escherichia coli, Enterococcus faecalis, and Candida albicans) present in urban wastewater. The membrane photoreactor is based on porous stainless steel membranes coated with a TiO₂ layer and illuminated by a UV-C lamp (254 nm). A valve actuator in the outlet of the UV-C stream allows operation of the system under conditions of constant transmembrane pressure (TMP) keeping the UV-C contact time in few seconds, significantly lower than the typical irradiation time employed in TiO₂ photocatalytic processes. An E. coli removal of up to 4-log in the permeate stream and up to 2-log in the UV-C outlet was achieved with a 0.2 μm membrane operating with a TMP of 0.5 bar and a UV-C contact time as low as 8 s. The microbial balance data from the cells recovered from the membrane confirmed that 96–98% of the removed microorganisms died due to the UV-C action over the membrane surface. Modification of the membrane with a TiO₂ layer has been also shown to be a suitable way to improve both the UV-C inactivation and the filtration efficiency. The results reported in this work constitute a proof of concept of the synergy between UV-C and filtration that can be achieved in a hybrid UV-C/microfiltration system, being a good example of process intensification where two products of different quality can be simultaneously obtained.
Afficher plus [+] Moins [-]Facile synthesis of magnetic disinfectant immobilized with silver ions for water pathogenic microorganism’s deactivation
2018
Elwakeel, Khalid Z. | El-Liethy, Mohamed Azab | Ahmed, Mohammad S. | Ezzat, Saeid M. | Kamel, Mohamed M.
One-pot synthesis of a new magnetic disinfectant was achieved through the polymerization of thiourea and formaldehyde in the presence of magnetite nanoparticles (MTUF). The obtained magnetic chelating resin was loaded with Ag(I) ions. This material was tested as a disinfectant for water pathogenic microorganism’s deactivation. The toxicity of MTUF before and after Ag(I) loading was estimated. The antimicrobial activity tests of MTUF-Ag were carried out against Escherichia coli, Salmonella Typhimurium, and Pseudomonas aeruginosa as examples of Gram-negative bacteria; Listeria monocytogenes, Staphylococcus aureus, Enterococcus faecalis, and Bacillus subtilis as examples of Gram-positive bacteria; and Candida albicans as representative for fungi. The results showed that the minimum inhibitory dosage (MID) of MTF-Ag against Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, Staphylococcus aureus, and mixed culture were 1.5, 2.0, 1.0, 1.5, and 1.5 mg/mL, respectively, after 40 min of contact time. While C. albicans was more resistant to the magnetic disinfectant, only three log reductions were done at 2.5 mg/mL. The studied MTUF-Ag was successfully tested for water and wastewater pathogenic microorganism’s deactivation. It can be concluded that MTUF-Ag could be a good candidate for water disinfection.
Afficher plus [+] Moins [-]New applied pharmacological approach/trend on utilization of agro-industrial wastes
2018
Ragab, Tamer I. M. | Shalaby, Al Shimaa Gamal | El Awdan, Sally A. | Refaat, Ahmed | Helmy, Wafaa A.
This study aimed to transform the locally available lignocellulosic residual palm frond (PF) and rice straw (RS) wastes into multifunction added products like methylated cellulose and sulfated and phosphorylated hemicelluloses by simple processes. Hydrolysis with 2 N sulfuric acid was the most suitable reaction for microcrystalline cellulose production. The characteristics of the prepared products were studied to obtain the optimum reaction conditions. Palm frond hemicellulose (PFHC) recorded the highest antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans (22, 22, 26 mm), respectively, and phosphorylated palm frond hemicellulose (PPFHC) exhibited the highest potential antioxidant activity of approximately 60%, suggesting a possible correlation between the two bioactivities. Most of extracted celluloses and their derivatives had a variety of promising probiotic activities which are expected to reduce the side effects of the gastric mucosa and possibly play a role in curing the gastric ulcer. Accordingly, the determination of anti-inflammatory and gastroprotective activity results revealed that methylcellulose, sulfated and phosphorylated hemicelluloses showed anti-inflammatory and gastroprotective activities and the capability of all tested compounds to ameliorate the ethanol-induced gastric ulcer in rats’ stomach. All results recommended PF and RS and their derivatives to be used as a medicinal food.
Afficher plus [+] Moins [-]