Affiner votre recherche
Résultats 1-7 de 7
Bioinformatics analysis and quantitative weight of evidence assessment to map the potential mode of actions of bisphenol A
2021
Li, Xiaomeng | Ni, Mengmei | Yang, Zhirui | Chen, Xuxi | Zhang, Lishi | Chen, Jinyao
Bisphenol A (BPA) is a classical chemical contaminant in food, and the mode of action (MOA) of BPA remains unclear, constraining the progress of risk assessment. This study aims to assess the potential MOAs of BPA regarding reproductive/developmental toxicity, neurological toxicity, and proliferative effects on the mammary gland and the prostate potentially related to carcinogenesis by using the Comparative Toxicogenomics Database (CTD)-based bioinformatics analysis and the quantitative weight of evidence (QWOE) approach on the basis of the principles of Toxicity Testing in the 21st Century. The CTD-based bioinformatics analysis results showed that estrogen receptor 1, estrogen receptor 2, mitogen-activated protein kinase (MAPK) 1, MAPK3, BCL2 apoptosis regulator, caspase 3, BAX, androgen receptor, and AKT serine/threonine kinase 1 could be the common target genes, and the apoptotic process, cell proliferation, testosterone biosynthetic process, and estrogen biosynthetic process might be the shared phenotypes for different target organs. In addition, the KEGG pathways of the BPA-induced action might involve the estrogen signaling pathway and pathways in cancer. After the QWOE evaluation, two potential estrogen receptor-related MOAs of BPA-induced testis dysfunction and learning-memory deficit were proposed. However, the confidence and the human relevance of the two MOAs were moderate, prompting studies to improve the MOA-based risk assessment of BPA.
Afficher plus [+] Moins [-]A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro
2019
Doan, T.Q. | Berntsen, H.F. | Verhaegen, S. | Ropstad, E. | Connolly, L. | Igout, A. | Müller, M. | Scippo, M.L.
While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only 4 exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC₅₀ TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC₅₀ underestimation. We also attained good predictions for the full dose-response curve of the antagonistic activity of the total POP mixture.
Afficher plus [+] Moins [-]Nanocurcumin alleviates inflammation and oxidative stress in LPS-induced mastitis via activation of Nrf2 and suppressing TLR4-mediated NF-κB and HMGB1 signaling pathways in rats
2022
Lebda, Mohamed A. | Elmassry, Ingi H. | Taha, Nabil M. | Elfeky, Mohamed S.
Coliform mastitis is a worldwide serious disease of the mammary gland. Curcumin is a pleiotropic polyphenol obtained from turmeric, but it is hydrophobic and rapidly eliminated from the body. However, nanoformulation of curcumin significantly improves its pharmacological activity by enhancing its hydrophobicity and oral bioavailability. Our study aimed to investigate the possible antioxidant and anti-inflammatory effects of nanocurcumin as a prophylactic against LPS-induced coliform mastitis in rat model, where LPS was extracted from a field strain of Escherichia coli (bovine mastitis isolate). The study was conducted on twenty lactating Wistar female rats divided into four equal groups, and the mastitis model was initiated by injection of LPS through the duct of the mammary gland. The results showed that nanocurcumin significantly attenuated the lipid peroxidation (MDA), oxidized glutathione, the release of pro-inflammatory cytokines (TNF-α and IL-1β), and the gene expression of TLR4, NF-κB p65, and HMGB1. Meanwhile, it improved the reduced glutathione level and Nrf2 activity and preserved the normal alveolar architecture. These findings suggested that nanocurcumin supplementation can be a promising potential protective approach for coliform mastitis.
Afficher plus [+] Moins [-]Stop eating plastic, molecular signaling of bisphenol A in breast cancer
2018
Shafei, Ayman | Matbouly, Marwa | Mostafa, Ezzat | Al Sannat, Salah | Abdelrahman, Mahmoud | Lewis, Bola | Badr, Muḥammad | Mohamed, Shaima | Mostafa, Randa Mohamed
Breast cancer is the second most common fatal cancer in women. Developing a breast cancer is a multi-factorial and hormonal-dependent process, which may be triggered by many risk factors. An endocrine disrupting substance known as bisphenol A (BPA), that is used greatly in the manufacture of plastic products, was suggested as a possible risk factor for developing breast cancer. BPA has a strong binding affinity to non-classical membrane estrogen receptors like estrogen-related and G protein-coupled (GPER) receptors. Based on animal and in vitro studies, results showed a link between BPA exposure and increased incidence of breast cancer. BPA has the ability to alter multiple molecular pathways in cells namely, G protein-coupled receptor (GPER) pathway, estrogen-related receptor gamma (ERRγ) pathway, HOXB9 (homeobox-containing gene) pathway, bone morphogenetic protein 2 (BMP2) and (BMP4), immunoregulatory cytokine disturbance in the mammary gland, EGFR-STAT3 pathway, FOXA1 in ER-breast cancer cells, enhancer of zeste homolog 2 (EZH2), and epigenetic changes. Thus, the aforementioned alterations cause undesired gene stimulation or repression that increase risk of developing breast cancer. So, restricting exposure to BPA should be considered to aid in lowering the risk of developing breast cancer.
Afficher plus [+] Moins [-]In vitro estrogenic, cytotoxic, and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine
2021
Nasri, Atefeh | Pohjanvirta, Raimo
Phytoestrogens have been widely praised for their health-promoting effects, whereas synthetic environmental estrogens are considered a toxicological risk to human health. The aim of this study was therefore to compare in vitro the estrogenic, cytotoxic, and genotoxic profiles of three common estrogen-like endocrine-disrupting chemicals: the phytoestrogens 8-prenylnaringenine (8-PN) and genistein and the synthetic xenoestrogen tartrazine. As assessed by a yeast bioreporter assay and estrogen-dependent proliferative response in human mammary gland adenocarcinoma cell line (MCF-7), 8-PN showed the highest estrogen-like activity of the three compounds, followed by tartrazine and genistein. After 24-h incubation on MCF-7 cells, all three compounds exhibited low cytotoxicity in the lactate dehydrogenase assay and no genotoxicity in the micronucleus assay. These results demonstrate that 8-PN, genistein and tartrazine possess variable estrogenic activity but display little cellular toxicity in short-term tests in vitro. No difference between phytoestrogens and a synthetic xenoestrogen could be established.
Afficher plus [+] Moins [-]In utero exposure to commercial artificial sweeteners affects mice development and mammary gland structure
2019
Al-Qudsi, Fatma M. | Al-Hasan, Manar M.
Commercial artificial sweeteners present in the market are usually made of combination of nutritive and artificial sweeteners such as sorbitol and aspartame. The aim of this research was to study the effect of in utero exposure to commercial artificial sweeteners on the mouse development and on mammary gland in different stages (18-day embryos and 4-week-old mice). Pregnant mice of treated groups were given 50 mg/kg body weight of commercial artificial sweetener. The dose was given on day 1 of pregnancy until 3-week nursing, while the controls were given distilled water. Congenital malformations were seen in treated 18-day fetus and 4-week-old mice, such as a significant decrease in the diameter of the placenta and the weight of the fetuses, while in 4-week-old mice, a significant decrease in the length of the body, limbs, and tail was seen compared to the controls. The result of this study showed that in 18-day fetuses, clusters of mammary gland in the treated mice seemed to be more differentiated than the controls. In 4-week-old mice, the number of mammary gland ducts in the treated group was significantly more than the control group, and the lumen of the ducts in the treated sections seemed to be narrower than the controls, also many regressing terminal end buds (TEBs) were seen in the treated group. A significant increase in the mammary gland area of treated group was seen compared to the controls.
Afficher plus [+] Moins [-]Assessment of acute toxicity and cytotoxicity of fluorescent markers produced by cardanol and glycerol, which are industrial waste, to different biological models
2019
Pelizaro, Bruno Ivo | Braga, Felipe Camargo | Crispim, Bruno do Amaral | de Barros, Luiz Guilherme Maiolino Lacerda | Pessatto, Lucas Roberto | Oliveira, Edwin José Torres | Vani, Juliana Miron | de Souza, Antonio Pancrácio | Grisolia, Alexeia Barufatti | Antoniolli-Silva, Andréia Conceição Milan Brochado | de Lima, Dênis Pires | dos Santos Jaques, Jeandre Augusto | Beatriz, Adilson | Oliveira, Rodrigo Juliano
The amphyphylic triazoanilines recently synthesized 1-(4-(3-aminophenyl)-1H-1,2,3- triazole-1-yl)-3-(3-pentadecylphenoxy)propan-2-ol (1) and 1-(4-(4-aminophenyl)-1H- 1,2,3-triazole-1-yl)-3-(3-pentadecylphenoxy)propan-2-ol (2), synthesized from cardanol and glycerol, have photophysical properties which allow their use in the development of fluorescent biomarkers with applicability in the biodiesel quality control. Based on this, the present research evaluated the toxic effects of both compounds in different biological models through the investigation of survival and mortality percentages as a measure of acute toxicity on Daphnia similis and Oreochromis niloticus, larvicidal assay against Aedes aegypti, and cytotoxic activity on mammary cells. Results demonstrate that these triazoanilines 1 and 2 have shown low acute toxicity to the biological models investigated in this study up to the following concentrations: 4.0 mg L-1 (D. similis), 4.0 mg L-1 (A. aegypti larvae), 1.0 mg L-1 (O. niloticus), and 1.0 mg mL-1 (mammary cells). This fact suggests the potential for safe use of compounds 1 and 2 as fluorescent markers for the monitoring of biodiesel quality, even in the case of environmental exposure. Besides all of that, the reuse of cardanol and glycerol, both industrial wastes, favors the maintenance of environmental health and is in agreement with the assumptions of green chemistry. Graphical abstract ᅟ
Afficher plus [+] Moins [-]