Affiner votre recherche
Résultats 1-10 de 50
Effects of Potamogeton crispus decline in the rhizosphere on the abundance of anammox bacteria and nirS denitrifying bacteria☆
2020
Hu, Jinlong | Zhou, Yuhao | Lei, Ziyan | Liu, Guanglong | Hua, Yumei | Zhou, Wenbing | Wan, Xiaoqiong | Zhu, Duanwei | Zhao, Jianwei
Bacteria involved with ecosystem N cycling in the rhizosphere of submerged macrophytes are abundant and diverse. Any declines of submerged macrophytes can have a great influence on the abundance and diversity of denitrifying bacteria and anammox bacteria. Natural decline, tardy decline, and sudden decline methods were applied to cultivated Potamogeton crispus. The abundance of anammox bacteria and nirS denitrifying bacteria in rhizosphere sediment were detected using real-time fluorescent quantitative PCR of 16S rRNA, and phylogenetic trees were constructed to analyze the diversities of these two microbes. The results indicated that the concentration of NH₄⁺ in pore water gradually increased with increasing distances from the roots, whereas, the concentration of NO₃⁻ showed a reverse trend. The abundance of anammox bacteria and nirS denitrifying bacteria in sediment of declined P. crispus populations decreased significantly over time. The abundance of these two microbes in the sudden decline group were significantly higher (P > 0.05) than the other decline treatment groups. Furthermore, the abundances of these two microbes were positively correlated, with RDA analyses finding the mole ratio of NH₄⁺/NO₃⁻ being the most important positive factor affecting microbe abundance. Phylogenetic analysis indicated that the anammox bacteria Brocadia fuigida and Scalindua wagneri, and nirS denitrifying bacteria Herbaspirillum and Pseudomonas, were the dominant species in declined P. crispus sediment. We suggest the sudden decline of submerged macrophytes would increase the abundance of anammox bacteria and denitrifying bacteria in a relatively short time.
Afficher plus [+] Moins [-]Comparative evaluation of bioremediation techniques on oil contaminated sediments in long-term recovery of benthic community health
2019
Lee, Changkeun | Hong, Seongjin | Noh, Junsung | Lee, Junghyun | Yoon, Seo Joon | Kim, Taewoo | Kim, Hosang | Kwon, Bong-Oh | Lee, Hanbyul | Ha, Sung Yong | Ryu, Jongseong | Kim, Jae Jin | Kwon, Kae Kyoung | Yim, Un Hyuk | Khim, Jong Seong
While various bioremediation techniques have been widely used at oil spill sites, the in situ efficiency of such techniques on recovering the benthic communities in intertidal areas has not been quantified. Here, the performance of several bioremediation tools such as emulsifiers, multi-enzyme liquid (MEL), microbes, and rice-straw was evaluated by a 90-days semi-field experiment, particularly targeting recovery of benthic community. Temporal efficiency in the removal of sedimentary total petroleum hydrocarbons (TPH), reduction of residual toxicity, and recovery of bacterial diversity, microalgal growth, and benthic production was comprehensively determined. Concentrations of TPH and amphipod mortality for all treatments rapidly decreased within the first 10 days. In addition, the density of bacteria and microphytobenthos generally increased over time for all treatments, indicating recovery in the benthic community health. However, the recovery of some nitrifying bacteria, such as the class Nitrospinia (which are sensitive to oil components) remained incomplete (13–56%) during 90 days. Combination of microbe treatments showed rapid and effective for recovering the benthic community, but after 90 days, all treatments showed high recovery efficiency. Of consideration, the “no action” treatment showed a similar level of recovery to those of microbe and MEL treatments, indicating that the natural recovery process could prevail in certain situations.
Afficher plus [+] Moins [-]Cooperation between partial-nitrification, complete ammonia oxidation (comammox), and anaerobic ammonia oxidation (anammox) in sludge digestion liquid for nitrogen removal
2019
Wu, Linuo | Shen, Mingyu | Li, Jin | Huang, Shan | Li, Zhi | Yan, Zhibin | Peng, Yongzhen
The challenge of sludge digester liquor treatment is its high ammonium nitrogen (NH₄⁺-N) concentration. Early reports found that complete ammonia oxidation (comammox) was not present and anaerobic ammonia oxidation (anammox) was difficult to achieve in most sludge digester liquor treatments. In this study, NH₄⁺-N removal by cooperation between partial-nitrification, comammox, and anammox processes was achieved in a sequencing batch reactor (SBR) for sludge digester liquor treatment. The results showed that 2100–2200 mg/L of NH₄⁺-N was removed in the SBR with 98.82% removal efficiency. In addition, 55.11% of NH₄⁺-N was converted to nitrite nitrogen (NO₂⁻-N) by partial-nitrification, 25.43% of NH₄⁺-N was converted to nitrate nitrogen (NO₃⁻-N) by comammox, and 18.28% of NH₄⁺-N was removed by anammox. During the operation, in the SBR, the relative abundance of the dominant ammonia-oxidizing bacteria (Chitinophagaceae) was 18.89%, that of the dominant anammox bacteria (Candidatus Kuenenia) was 0.10%, and that of the dominant comammox bacteria (Nitrospira) was 0.20%. Therefore, the high nitrogen removal efficiency in this system was considered the result of the combination of the three processes. These results showed that comammox and anammox could play very important roles in nitrogen transformation and energy-saving in nitrogen removal systems.
Afficher plus [+] Moins [-]Influence of temperature on phenanthrene toxicity towards nitrifying bacteria in three soils with different properties
2016
Suszek-Łopatka, Beata | Maliszewska-Kordybach, Barbara | Klimkowicz-Pawlas, Agnieszka | Smreczak, Bożena
This study focused on the combined effect of environmental conditions (temperature) and contamination (polycyclic aromatic hydrocarbons, PAHs) on the activity of soil microorganisms (nitrifying bacteria). Phenanthrene (Phe) at five contamination levels (0, 1, 10, 100 and 1000 mg kg−1 dry mass of soil) was employed as a model PAH compound in laboratory experiments that were conducted at three temperatures (i.e., 20 °C (recommended by ISO 15685 method), 15 and 30 °C). Three soils with different properties were used in these studies, and the activity of the nitrifying bacteria was assessed based on nitrification potential (NP) determinations. For the statistical evaluation of the results, the ANCOVA (analysis of covariance) method for three independent variables (i.e., temperature, phenanthrene concentration, soil matrix (as a qualitative variable)) and their interactions was employed. The results indicated on the significant interaction of all studied factors. Temperature influenced the toxicity of Phe towards NP, and this effect was related to the Phe concentration as well as was varied for the different soils. A low content of soil organic matter (controlling bioavailability of phenanthrene to soil microorganisms) enhanced the combined effect of temperature and Phe toxicity, and a high biological activity of the soil (high NP values) increased the effect of high temperature on the Phe stimulatory influence. The results indicate that the temperature should not be neglected in tests evaluating PAH ecotoxicity, especially for reliable ecological risk assessment.
Afficher plus [+] Moins [-]Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources
2020
Wang, Qiaojuan | Liang, Jinsong | Zhao, Chen | Bai, Yaohui | Liu, Ruiping | Liu, Huijuan | Qu, Jiuhui
Currently, wastewater treatment plant (WWTP) upgrades have been implemented in various countries to improve the water quality of the receiving ecosystems and protect aquatic species from potential deleterious effects. The impact of WWTP upgrades on biological communities and functions in receiving waters is a fundamental issue that remains largely unaddressed, especially for microbial communities. Here, we selected two wastewater-dominant rivers in Beijing (China) as study sites, i.e., one river receiving water from an upgraded WWTP to explore the impacts of upgrade on aquatic ecosystems and another river receiving water from a previously upgraded WWTP as a reference. After a five-year investigation, we found that WWTP upgrade significantly decreased total organic nitrogen (N) in the receiving river. As a biological response, N-metabolism-related bacterioplankton are accordingly altered in composition and tend to intensively interact according to the network analysis. Metagenomic analysis based on the N-cycling genes and metagenomic-assembled genomes revealed that WWTP upgrade decreased the abundance of nitrifying bacteria but increased that of denitrifying and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in the receiving river, according to their marker gene abundances. After calculation of the ratios between DNRA and denitrifying bacteria and quantification of genes/bacteria related to ammonium cycling, we deduced the changes in N-metabolism-related bacteria are likely an attempt to provide enough bioavailable N for plankton growth as conservation of ammonium was enhanced in receiving river after WWTP upgrade.
Afficher plus [+] Moins [-]Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms
2019
Cheng, Chao | Ma, Junchao | Wang, Jinhua | Du, Zhongkun | Li, Bing | Wang, Jun | Gao, Chong | Zhu, Lusheng
Ionic liquids (ILs) are extensively used in several chemistry fields. And research about the effects of ILs on soil microbes is needed. In this study, brown soil was exposed to 1-butyl-3-methylimidazolium bromide ([C₄mim]Br), 1-hexyl-3-methylimidazolium bromide ([C₆mim]Br) and 1-decyl-3-methylimidazolium bromide ([C₁₀mim]Br). The toxicities of the three ILs are evaluated by measuring the soil culturable microbial number, enzyme activity, microbial diversity and, abundance of the ammonia monooxygenase (amoA) genes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Results showed that all tested ILs caused a decrease in culturable microbial abundance. Tested ILs exposure inhibit urease activity and promote acid phosphatase and β-glucosidase activities. Tested ILs reduced soil microbial diversity and the abundances of AOB-amoA and AOA-amoA genes significantly. After a comparison of the integrated biomarker response (IBR) index, the toxicities of tested ILs to soil microorganisms were as follows: [C₁₀mim]Br > [C₆mim]Br > [C₄mim]Br. Among all collected biomarkers, the abundance of the AOA-amoA gene was the most sensitive one and was easily affected after ILs exposure.
Afficher plus [+] Moins [-]Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine
2019
Wang, Bingzheng | Ni, Bing-Jie | Yuan, Zhiguo | Guo, Jianhua
The intensive use of antibiotics results in the continuous release of antibiotics into wastewater treatment systems, leading to the spread of antibiotic resistance. Nitrifying system is reported to be capable of degrading antibiotics, yet few studies have systematically investigated the inherent correlation among ammonium oxidation rate, antibiotic degradation and genetic expression of nitrifying bacteria along the process. This study selected a widely used sulfonamide antibiotic, sulfadiazine (SDZ), to investigate its biodegradation potential by an enriched nitrifying culture and the response of nitrifying bacteria against antibiotic exposure. Our results demonstrated that SDZ degradation was mainly contributed by cometabolism of ammonia-oxidizing bacteria (AOB), rather than biomass adsorption. The quantitative reverse transcription PCR (RT-qPCR) analysis revealed that the expression level of amoA gene was down-regulated due to the SDZ exposure. In addition, the degradation products of SDZ did not exhibit inhibitory effect on Escherichia coli K12, indicating the biotoxicity of SDZ could be mitigated after biodegradation. The findings offer insights regarding the biodegradation process of sulfonamide antibiotics via cometabolism by AOB.
Afficher plus [+] Moins [-]A multivariate approach of changes in filamentous, nitrifying and protist communities and nitrogen removal efficiencies during ozone dosage in a full-scale wastewater treatment plant
2019
Barbarroja, Paula | Zornoza, Andrés | Aguado, Daniel | Borrás, Luis | Alonso, José Luis
The application of low ozone dosage to minimize the problems caused by filamentous foaming was evaluated in two bioreactors of an urban wastewater treatment plant. Filamentous and nitrifying bacteria, as well as protist and metazoa, were monitored throughout a one-year period by FISH and conventional microscopy to examine the effects of ozone application on these specific groups of microorganisms. Multivariate data analysis was used to determine if the ozone dosage was a key factor determining the low carbon and nitrogen removal efficiencies observed throughout the study period, as well as to evaluate its impact on the biological communities monitored. The results of this study suggested that ozonation did not significantly affect the COD removal efficiency, although it had a moderate effect on ammonia removal efficiency. Filamentous bacteria were the community most influenced by ozone (24.9% of the variance explained by ozone loading rate), whilst protist and metazoa were less affected (11.9% of the variance explained). Conversely, ozone loading rate was not a factor in determining the nitrifying bacterial community abundance and composition, although this environmental variable was correlated with ammonia removal efficiency. The results of this study suggest that different filamentous morphotypes were selectively affected by ozone.
Afficher plus [+] Moins [-]Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation
2019
Chen, Xueming | Yang, Linyan | Sun, Jing | Dai, Xiaohu | Ni, Bing-Jie
Thiocyanate (SCN⁻)-based autotrophic denitrification (AD) has recently been demonstrated as a promising technology that could be integrated with anaerobic ammonium oxidation (Anammox) to achieve simultaneous removal of nitrogen and SCN⁻. However, there is still a lack of a complete SCN⁻-based AD model, and the potential microbial competition/synergy between AD bacteria and Anammox bacteria under different operating conditions remains unknown, which significantly hinders the possible application of coupling SCN⁻-based AD with Anammox. To this end, a complete SCN⁻-based AD model was firstly developed and reliably calibrated/validated using experimental datasets. The obtained SCN⁻-based AD model was then integrated with the well-established Anammox model and satisfactorily verified with experimental data from a system coupling AD with Anammox. The integrated model was lastly applied to investigate the impacts of influent NH₄⁺-N/NO₂⁻-N ratio and SCN⁻ concentration on the steady-state microbial composition as well as the removal of nitrogen and SCN⁻. The results showed that the NH₄⁺-N/NO₂⁻-N ratio in the presence of a certain SCN⁻ level should be controlled at a proper value so that the maximum synergy between AD bacteria and Anammox bacteria could be achieved while their competition for NO₂⁻ would be minimized. For the simultaneous maximum removal (>95%) of nitrogen and SCN⁻, there existed a negative relationship between the influent SCN⁻ concentration and the optimal NH₄⁺-N/NO₂⁻-N ratio needed.
Afficher plus [+] Moins [-]Denitrification and anammox: Understanding nitrogen loss from Yangtze Estuary to the east China sea (ECS)
2019
Wang, Jing | Kan, Jinjun | Qian, Gang | Chen, Jianfang | Xia, Zhiqiang | Zhang, Xiaodong | Liu, Haijiao | Sun, Jun
The Yangtze River, which is the largest in Euro-Asian, receives tremendous anthropogenic nitrogen input and is typically characterized by severe eutrophication and hypoxia. Two major processes, denitrification and anaerobic ammonium oxidation (anammox), play vital roles for removing nitrogen global in nitrogen cycling. In the current study, sediment samples were collected from both latitudinal and longitudinal transects along the coastal Yangtze River and the East China Sea (ECS). We investigated community composition and distributions of nosZ gene-encoded denitrifiers by high throughput sequencing, and also quantified the relative abundances of both denitrifying and anammox bacteria by q-PCR analysis. Denitrifying communities showed distinct spatial distribution patterns that were impacted by physical (water current and river runoffs) and chemical (nutrient availability and organic content) processes. Both denitrifying and anammox bacteria contributed to the nitrogen removal in Yangtze Estuary and the adjacent ECS, and these two processes shifted from coastal to open ocean with reverse trends: the abundance of nosZ gene decreased from coastal to open ocean while anammox exhibited an increasing trend based on quantifications of hzsB and 16S rRNA genes. Further correspondence correlation analysis revealed that salinity and nutrients were the main factors in structuring composition and distribution of denitrifying and anammox bacteria. This study improved our understanding of dynamic processes in nitrogen removal from estuarine to open ocean. We hypothesize that denitrification is the major nitrogen removal pathway in estuaries, but in open oceans, low nutrient and organic matter concentrations restrict denitrification, thus increasing the importance of anammox as a nitrogen removal process.
Afficher plus [+] Moins [-]