Affiner votre recherche
Résultats 1241-1250 de 7,288
Leaching of microplastic-associated additives in aquatic environments: A critical review Texte intégral
2022
Do, Anh TNgoc | Ha, Yeonjeong | Kwon, Jung-Hwan
Microplastic pollution has attracted significant attention as an emerging global environmental problem. One of the most important issues with microplastics is the leaching of harmful additives. This review summarizes the recent advances in the understanding of the leaching phenomena in the context of the phase equilibrium between microplastics and water, and the release kinetics. Organic additives, which are widely used in plastic products, have been introduced because they have diverse physicochemical properties and mass fractions in plastics. Many theoretical and empirical models have been utilized in laboratory and field studies. However, the partition or distribution constant between microplastics and water (Kₚ) and the diffusivity of an additive in microplastics (D) are the two key properties explaining the leaching equilibrium and kinetics of hydrophobic organic additives. Because microplastics in aquatic environments undergo dynamic weathering, leaching of organic additives with high Kₚ and/or low D cannot be described by a leaching model that only considers microplastic and water phases with a fixed boundary. Surface modifications of microplastics as well as biofilms colonizing microplastic surfaces can alter the leaching equilibrium and kinetics and transform additives. Further studies on the release of hydrophobic organic additives and their transformation products under various conditions are required to extend our understanding of the environmental fate and transport of these additives in aquatic environments.
Afficher plus [+] Moins [-]Colonization of biofilm in wastewater treatment: A review Texte intégral
2022
Li, Lixin | He, Zhengming | Liang, Taojie | Sheng, Tao | Zhang, Fugui | Wu, Dan | Ma, Fang
The attachment and colonization process of microorganisms on a carrier is an interdisciplinary research field. Through a series of physical, chemical, and biological actions, the microorganisms can eventually reproduce on the carrier. This article introduces biofilm start-up and its applications, and explores the current issues to look forward to future development directions. Firstly, the mechanism of microbial film formation is analyzed from the microbial community colonization and reproduction process. Secondly, when analyzing the factors influencing microbial membrane formation, the effect of microbial properties (e.g., genes, proteins, lipids) and external conditions (i.e., carrier, operating environment, and regulation mechanism among microbial communities) were discussed in depth. Aimed at exploring the mechanisms and influencing factors of biofilm start-up, this article proposes the application measures to strengthen this process. Finally, the problems encountered and the future development direction of the technology are analyzed and prospected.
Afficher plus [+] Moins [-]Transcriptional insights into Cu related tolerance strategies in maize linked to a novel tea-biochar Texte intégral
2022
Pehlivan, Necla | Wang, Jim J.
One-third of maize cultivation in Turkey has been performed in nutrient-rich soils of the coastal agricultural lands of the Black Sea Region, which is among the country's granaries. However, the yield of this chief crop is affected by Cu toxicity due to a decades-long abandoned opencast Cu-mine. As part of the modern agenda, against this problem, we valorized one of the region's signature plant waste by synthesizing a tea-derived biochar (BC) and evaluated for remediation effect on maize Cu tolerance. Among other rates (0%, 0.4%, 0.8%, 1.6%), maximum Cu absorption (168.27 mg kg⁻¹) was found in the 5%BC in in-vitro spiking experiments where natural Cu contamination levels were mimicked. Obvious increasing trends in both root and shoot tissues of maize plantlets growing in Cu-spiked soil (260.26 ± 5.19 mg Cu kg⁻¹) were recorded with proportionally increasing BC application rates. The black tea waste-BC (5%) amendment remarkably reduced the Cu uptake from Cu spiked-soil and showed no phenotypic retardation in maize. Accordingly, it boosted the metabolic and transcriptomic profile owing to up-regulation in the aquaporin and defense genes (PIP1;5 and POD1) by 1.31 and 1.6 fold. The tea-BC application also improved the soil-plant water relations by minimizing cytosolic volume changes between 85 and 90%, increasing chlorophyll intactness (65%) and membrane stability up to 41%. The tea-BC could be a strong agent with potential agronomic benefits in the remediation of the cationic Cu toxicity that occurred in the mining-contaminated agricultural soils.
Afficher plus [+] Moins [-]Growth and photosynthetic responses to ozone of Siebold's beech seedlings grown under elevated CO2 and soil nitrogen supply Texte intégral
2022
Watanabe, Makoto | Li, Jing | Matsumoto, Misako | Aoki, Takuro | Ariura, Ryo | Fuse, Tsuyoshi | Zhang, Yazhuo | Kinose, Yoshiyuki | Yamaguchi, Masahiro | Izuta, Takeshi
Ozone (O₃) is a phytotoxic air pollutant, the adverse effects of which on growth and photosynthesis are modified by other environmental factors. In this study, we examined the combined effects of O₃, elevated CO₂, and soil nitrogen supply on Siebold's beech seedlings. Seedlings were grown under combinations of two levels of O₃ (low and two times ambient O₃ concentration), two levels of CO₂ (ambient and 700 ppm), and three levels of soil nitrogen supply (0, 50, and 100 kg N ha⁻¹ year⁻¹) during two growing seasons (2019 and 2020), with leaf photosynthetic traits being determined during the second season. We found that elevated CO₂ ameliorated O₃-induced reductions in photosynthetic activity, whereas the negative effects of O₃ on photosynthetic traits were enhanced by soil nitrogen supply. We observed three-factor interactions in photosynthetic traits, with the ameliorative effects of elevated CO₂ on O₃-induced reductions in the maximum rate of carboxylation being more pronounced under high than under low soil nitrogen conditions in July. In contrast, elevated CO₂-induced amelioration of the effects of O₃ on stomatal function-related traits was more pronounced under low soil nitrogen conditions. Although we observed several two- or three-factor interactions of gas and soil treatments with respect to leaf photosynthetic traits, the shoot to root dry mass (S/R) ratio was the only parameter for which a significant interaction was detected among seedling growth parameters. O₃ caused a significant increase in S/R under ambient CO₂ conditions, whereas no similar effects were observed under elevated CO₂ conditions. Collectively, our findings reveal the complex interactive effects of elevated CO₂ and soil nitrogen supply on the detrimental effects of O₃ on leaf photosynthetic traits, and highlight the importance of taking into consideration differences between the responses of CO₂ uptake and growth to these three environmental factors.
Afficher plus [+] Moins [-]Use of artificial neural network to evaluate cadmium contamination in farmland soils in a karst area with naturally high background values Texte intégral
2022
Li, Cheng | Zhang, Chaosheng | Yu, Tao | Liu, Xu | Yang, Yeyu | Hou, Qingye | Yang, Zhongfang | Ma, Xudong | Wang, Lei
In recent years, the naturally high background value region of Cd derived from the weathering of carbonate has received wide attention. Due to the significant difference in soil Cd content and bioavailability among different parent materials, the previous land classification scheme based on total soil Cd content as the classification standard, has certain shortcomings. This study aims to explore the factors influencing soil Cd bioavailability in typical karst areas of Guilin and to suggest a scientific and effective farmland use management plan based on the prediction model. A total of 9393 and 8883 topsoil samples were collected from karst and non-karst areas, respectively. Meanwhile, 149 and 145 rice samples were collected together with rhizosphere soil in karst and non-karst areas, respectively. The results showed that the higher CaO level in the karst area was a key factor leading to elevated soil pH value. Although Cd was highly enriched in karst soils, the higher pH value and adsorption of Mn oxidation inhibited Cd mobility in soils. Conversely, the Cd content in non-karst soils was lower, whereas the Cd level in rice grains was higher. To select the optimal prediction model based on the correlation between Cd bioaccumulation factors and geochemical parameters of soil, artificial neural network (ANN) and linear regression prediction models were established in this study. The ANN prediction model was more accurate than the traditional linear regression model according to the evaluation parameters of the test set. Furthermore, a new land classification scheme based on an ANN prediction model and soil Cd concentration is proposed in this study, making full use of the spatial resources of farmland to ensure safe rice consumption.
Afficher plus [+] Moins [-]Understanding aquaporin regulation defining silicon uptake and role in arsenic, antimony and germanium stress in pigeonpea (Cajanus cajan) Texte intégral
2022
Mandlik, Rushil | Singla, Pankaj | Kumawat, Surbhi | Khatri, Praveen | Ansari, Waquar | Singh, Anuradha | Sharma, Yogesh | Singh, Archana | Solanke, Amol | Nadaf, Altafhusain | Sonah, Humira | Deshmukh, Rupesh
Understanding of aquaporins (AQPs) facilitating the transport of water and many other small solutes including metalloids like silicon (Si) and arsenic (As) is important to develop stress tolerant cultivars. In the present study, 40 AQPs were identified in the genome of pigeonpea (Cajanus cajan), a pulse crop widely grown in semi-arid region and areas known to affected with heavy metals like As. Conserved domains, variation at NPA motifs, aromatic/arginine (ar/R) selectivity filters, and pore morphology defined here will be crucial in predicting solute specificity of pigeonpea AQPs. The study identified CcNIP2-1 as an AQP predicted to transporter Si (beneficial element) as well as As (hazardous element). Further Si quantification in different tissues showed about 1.66% Si in leaves which confirmed the predictions. Furthermore, scanning electron microscopy showed a higher level of Si accumulation in trichomes on the leaf surface. A significant alleviation in level of As, Sb and Ge stress was also observed when these heavy metals were supplemented with Si. Estimation of relative water content, H₂O₂, lipid peroxidation, proline, total chlorophyll content and other physiological parameters suggested Si derived stress tolerance. Extensive transcriptome profiling under different developmental stages from germination to senescence was performed to understand the tissue-specific regulation of different AQPs. For instance, high expression of TIP3s was observed only in reproductive tissues. Co-expression network developed using transcriptome data from 30 different conditions and tissues, showed interdependency of AQPs. Expression profiling of pigeonpea performed using real time PCR showed differential expression of AQPs after Si supplementation. The information generated about the phylogeny, distribution, molecular evolution, solute specificity, and gene expression dynamics in article will be helpful to better understand the AQP transport system in pigeonpea and other legumes.
Afficher plus [+] Moins [-]Trace metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls in the surface sediments from Sanya River, China: Distribution, sources and ecological risk Texte intégral
2022
Cui, Mengke | Xu, Shiliang | Song, Wenqing | Ye, Huibin | Huang, Jialiang | Liu, Binhan | Dong, Bin | Xu, Zuxin
The urban inland river ecosystems are now facing comprehensive pollution and governance pressures. Up to now, few works related to the multiple pollution assessment of trace metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) for the urban inland river sediments have been reported in China. Our study investigated the spatial distribution, ecological risk and potential sources of trace metals, PAHs and PCBs in surface sediment collected from 20 sampling sites of Sanya River, Hainan Province, China. The pollution status and potential ecological risk of trace metals were evaluated using the contamination indexes including geoaccumulation index (Igₑₒ), individual potential ecological risk (Eri), potential ecological risk index (RI) and pollution load index (PLI). Considering the carcinogenicity and toxicity of PAHs and PCBs to human health and the ecological environment, we also analyzed the distributions, sources and adverse biological effects of PAHs and PCBs according to the sediment quality guidelines (SQGs), principal component analysis (PCA) and other source analysis. This study revealed that the surface sediments in Sanya River were extremely slight pollution and showed a very low ecological risk according to Igₑₒ, Eri, PLI and RI results for trace metals. Besides, PAHs and PCBs pollution detected may not pose considerable adverse biological effect to ecological environment in a foreseeable period on the basis of comprehensive research results. The overall surface sediments quality of the Sanya River not seem to pose a serious pollution and ecological risk based on the evaluation results of multiple pollution factors. The study provided detailed information on the multiple pollution status and location of surface sediments, one of the key environmental indicators of international tourism cities, in the Sanya River, which would be useful for the water quality improvement of Sanya River and the environmental remediation of the other coastal ecosystems from different regions.
Afficher plus [+] Moins [-]Transport and partitioning of metals in river networks of a plain area with sedimentary resuspension and implications for downstream lakes Texte intégral
2022
Zhang, Jin | Wang, Kun | Yi, Qitao | Zhang, Tao | Shi, Wenqing | Zhou, Xuefei
This study showed that metal transport and partitioning are primarily controlled by suspended solids with seasonal flow regimes in plain river networks with sedimentary resuspension. Eight metal species containing iron (Fe), manganese (Mn), cadmium (Cd), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn), in multiple phases of sediments, suspended solids (>0.7 μm), colloids (1 nm-0.7 μm) and dissolved phase (<1 nm) were analysed to characterize their temporal-spatial patterns, partitioning and transport on a watershed scale. Metal concentrations were associated with suspended solids in the water column and decreased from low flow to high flow. However, metal partitioning between particulate phase (suspended solids) and dissolvable phases (colloids and dissolved phase) was reversed and increased from low flow to high flow with decreased concentration of total suspended solids and median particle size. Partition coefficients (kₚ) showed differences among metal species, with higher values for Pb (354.3–649.0 L/g) and Cr (54.2–223.7 L/g) and lower values for Zn (2.5–25.2 L/g) and Cd (17.3–21.0 L/g). Metal concentrations in sediments increased by factors of 1.2–3.0 from upstream to downstream in watersheds impacted by urbanization. The behaviours of metals in rivers provide deeper insight into the ecological risks they pose for downstream lakes, where increased redox potential and organic matter may increase metal mobility due to algal blooms. Areas with heavy pollution of metals and the transport routines of metals in the river networks were also revealed in our research.
Afficher plus [+] Moins [-]Multiresistant bacteria: Invisible enemies of freshwater mussels Texte intégral
2022
Saavedra, Maria José | Fernandes, Conceição | Teixeira, Amílcar | Álvarez, Xana | Varandas, Simone
Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to β-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality.
Afficher plus [+] Moins [-]Rhizophagus irregularis enhances tolerance to cadmium stress by altering host plant hemp (Cannabis sativa L.) photosynthetic properties Texte intégral
2022
Sun, Simiao | Feng, Yuhan | Huang, Guodong | Zhao, Xu | Song, Fuqiang
Arbuscular mycorrhizal fungi (AMF) are widespread and specialized soil symbiotic fungi, and the establishment of their symbiotic system is of great importance for adversity adaptation. To reveal the growth and photosynthetic characteristics of AMF–crop symbionts in response to heavy metal stress, this experiment investigated the effects of Rhizophagus irregularis (Ri) inoculation on the growth, photosynthetic gas exchange parameters, and chlorophyll fluorescence characteristics of hemp (Cannabis sativa L.) at a Cd concentration of 80 mg/kg. The results showed that (1) under Cd stress, the biomass of each plant structure in the Ri treatment was significantly higher than that in the noninoculation treatment (P < 0.05); (2) under Cd stress, the transpiration rate, stomatal conductance, net photosynthetic rate, PSII efficiency, apparent electron transport rate and photochemical quenching coefficient of the Ri inoculation group reached a maximum, with increases ranging from 1% to 28%; (3) inoculation of Ri significantly reduced Cd enrichment in leaves, which in turn significantly increased the transpiration rate, stomatal conductance, electron transfer rate, net photosynthetic rate and photosynthetic intensity, protecting PSII (P < 0.05); and (4) by measuring the light response curves of different treatments, the light saturation points of hemp inoculated with the Ri treatment reached 1448.4 μmol/m²/s, and the optical compensation point reached 24.0 μmol/m²/s under Cd stress. The Ri–hemp symbiont demonstrated high adaptability to weak light and high utilization efficiency of strong light under Cd stress. Our study showed that Ri–hemp symbiosis improves adaptation to Cd stress and promotes plant growth by regulating the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of plants. The Ri–hemp symbiosis is a promising technology for improving the productivity of Cd-contaminated soil.
Afficher plus [+] Moins [-]