Affiner votre recherche
Résultats 231-240 de 6,560
Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation Texte intégral
2020
Gomes de Barros, Valciney | Rodrigues, Carmen S.D. | Botello-Suárez, Wilmar Alirio | Duda, Rose Maria | Alves de Oliveira, Roberto | da Silva, Eliana S. | Faria, Joaquim L. | Boaventura, Rui A.R. | Madeira, Luis M.
Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester. Three treatment approaches (Fenton’s oxidation - Approach 1, Coagulation/flocculation (C/F) - Approach 2, and the combination of C/F with Fenton’s process - Approach 3) were selected to be applied to the biodigested CPW in order to achieve that objective.The application of the Fenton process under the optimal operating conditions (initial pH = 5.0; T = 55 °C, [Fe³⁺] = 1.8 g L⁻¹ and [H₂O₂] = 9.0 g L⁻¹) increased the biodegradability (the BOD₅:COD ratio raised from 0.34 ± 0.02 in biodigested CPW to 0.44 ± 0.01 after treatment) and eliminated the toxicity (0.0% of Vibrio fischeri inhibition) along with moderate removals of organic matter (51.3%, 55.7% and 39.7% for total organic carbon – TOC, chemical oxygen demand – COD and biochemical oxygen demand - BOD₅, respectively). The implementation of a coagulation/flocculation process upstream from Fenton’s oxidation, under the best operating conditions (pH 10–11 and [Fe³⁺] = 250 mg L⁻¹), also allowed to slightly increase the biodegradability (from 0.34 to 0.47) and reduce the toxicity, whereas providing a higher removal of organic matter (TOC = 76.2%, COD = 76.5 and BOD₅ = 66.3% for both processes together). Approach 1 and Approach 3 showed to be the best ones, implying similar operating costs (∼74 R$ m⁻³/∼17 € m⁻³) and constitute an attractive option for managing biodigested CPW.
Afficher plus [+] Moins [-]Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana Texte intégral
2020
Jin, Mingkang | Wang, Huan | Liu, Huijun | Xia, Yilu | Ruan, Songlin | Huang, Yuqing | Qiu, Jieren | Du, Shaoting | Xu, Linglin
Ionic liquids (ILs) are extensively used in various fields, posing a potential threat in the ecosystem because of their high stability, excellent solubility, and biological toxicity. In this study, the toxicity mechanism of three ILs, 1-octyl-3-methylimidazolium chloride ([C₈MIM]Cl), 1-decyl-3-methylimidazolium chloride ([C₁₀MIM]Cl), and 1-dodecyl-3-methylimidazolium chloride ([C₁₂MIM]Cl) on Arabidopsis thaliana were revealed. Reactive oxygen species (ROS) level increased with higher concentration and longer carbon chain length of ILs, which led to the increase of malondialdehyde (MDA) content and antioxidase activity, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and peroxidase (POD) activities. SOD, CAT, and GPX activities decreased in high ILs concentration due to the excessive ROS. Differentially expressed protein was analyzed based on Gene ontology (GO) and KEGG pathways analysis. 70, 45, 84 up-regulated proteins, and 72, 104, 79 down-regulated proteins were identified in [C₈MIM]Cl, [C₁₀MIM]Cl, and [C₁₂MIM]Cl treatment, respectively (fold change ≥ 1.5 with ≥95% confidence). Cellular aldehyde metabolic process, mitochondrial and mitochondrial respiratory chains, glutathione transferase and oxidoreductase activity were enriched as up-regulated proteins as the defense mechanism of A. thaliana to resist external stresses. Chloroplast, photosynthetic membrane and thylakoid, structural constituent of ribosome, and transmembrane transport were enriched as the down-regulated protein. Compared with the control, 8 and 14 KEGG pathways were identified forup-regulated and down-regulated proteins, respectively, in three IL treatments. Metabolic pathways, carbon metabolism, biosynthesis of amino acids, porphyrin and chlorophyll metabolism were significantly down-regulated. The GO terms annotation demonstrated the oxidative stress response and effects on photosynthesis of A. thaliana in ILs treatment from biological process, cellular component, and molecular function categories.
Afficher plus [+] Moins [-]Effect of different air pollution control devices on the gas/solid-phase distribution of PCDD/F in a full-scale municipal solid waste incinerator Texte intégral
2020
Lin, Xiaoqing | Ma, Yunfeng | Chen, Zhiliang | Li, Xiaodong | Lu, Shengyong | Yan, Jianhua
The emission of polychlorinated dibenzo-p-dioxins and -furans (PCDD/F) from full-scale municipal solid waste incinerators (MSWI) is harmful to human and environmental health. This study analyzes the effect of different units of an air pollution control devices (APCDs), i.e. the semi-dry scrubber, fabric filter (FF), selective catalytic reduction (SCR), and wet scrubber (WS), on the removal characteristics and gas- and solid-phase distributions of PCDD/F in MSWI flue gas. APCDs reduce PCDD/F concentrations from 24.9 ng Nm⁻³ to 0.979 ng Nm⁻³ (2.16 ng I-TEQ Nm⁻³ to 0.0607 ng I-TEQ Nm⁻³), with a total removal efficiency (RE) of 96.1% (97.2% I-TEQ). Specifically, APCDs remove more than 95% of both gas- and solid-phase PCDD/F. The FF coupled with active carbon injection (FF + ACI) substantially reduces both gas- and solid-phase PCDD/F concentrations with an RE of 97.2% (98.7% I-TEQ). Additionally, FF + ACI exhibits a better RE of PCDF (98.9%) than PCDD (94.6%) and leads to PCDD congeners dominating the gas-phase. Both desorption and destruction of PCDD/F occur in the SCR, which favors removal of gas-phase PCDD/F but increases solid-phase PCDD/F. Therefore, SCR only decreases PCDD/F with a low RE of 27.6% (16.9% I-TEQ). However, SCR reduces NOₓ with a high RE of 82.3%, which could inhibit the RE of PCDD/F because of their different reaction mechanisms. WS increases PCDD/F in both the gas and solid-phase by 1.95 times (2.57 times for I-TEQ) due to the memory effect, which typically increases the total mass concentration of PCDD/F and the proportions of lower-chlorinated gas-phase PCDD/F. Migration of gas- and solid-phase PCDD/F are also analyzed according to temperature. The results of this study can contribute to the optimized design of industrial APCDs for controlling PCDD/F emissions from MSWI.
Afficher plus [+] Moins [-]The HR-CS-GF-AAS determination and preconcentration of palladium in contaminated urban areas, especially in lichens Texte intégral
2020
Komendova, Renata
The increasing content of platinum group metal particles emitted into the environment by car traffic is gradually attracting the attention of the scientific community. However, the methods for the determination of platinum group metals in environmental matrices are either costly or suffer from low sensitivity. To facilitate the use of less sensitive, but significantly cheaper, devices, the preconcentration of platinum group metals is employed. For platinum, a multitude of preconcentration approaches have been published. On the contrary, the preconcentration approaches for palladium are still rare. In this work, the development, optimization, and testing of a new approach is described; it is based on a preconcentration of palladium on octadecyl modified silica gel together with the complexing agent dimethylglyoxime, and it is then analyzed with the high-resolution continuum-source atomic absorption spectrometry. For comparison, a newly developed sorbent, QuadraSil™ TA, with a high affinity for platinum group metals was also tested. The preconcentraiton approach was tested on the lichen Hypogymnia physodes, which served as a bioindicator of palladium emissions. The case study site was a mid-sized city in central Europe: Brno, Czech Republic. The dry “bag” monitoring technique was used to collect the palladium near roads with a large span of traffic density. The developed analytical approach confirmed an increasing concentration of palladium with increasing exposure time and intensity of the traffic. Consequently, a simple relationship between the amount of bioaccumulated palladium and traffic density was established.
Afficher plus [+] Moins [-]Associations of annual ambient PM2.5 components with DNAm PhenoAge acceleration in elderly men: The Normative Aging Study Texte intégral
2020
Wang, Cuicui | Koutrakis, Petros | Gao, Xu | Baccarelli, Andrea | Schwartz, Joel
Current studies indicate that long-term exposure to ambient fine particulate matter (PM₂.₅) is related with global mortality, yet no studies have explored relationships of PM₂.₅ and its species with DNAm PhenoAge acceleration (DNAmPhenoAccel), a new epigenetic biomarker of phenotypic age. We identified which PM₂.₅ species had association with DNAmPhenoAccel in a one-year exposure window in a longitudinal cohort. We collected whole blood samples from 683 elderly men in the Normative Aging Study between 1999 and 2013 (n = 1254 visits). DNAm PhenoAge was calculated using 513 CpGs retrieved from the Illumina Infinium HumanMethylation450 BeadChip. Daily concentrations of PM₂.₅ species were measured at a fixed air-quality monitoring site and one-year moving averages were computed. Linear mixed-effect (LME) regression and Bayesian kernel machine (BKM) regression were used to estimate the associations. The covariates included chronological age, body mass index (BMI), cigarette pack years, smoking status, estimated cell types, batch effects etc. Benjamini-Hochberg false discovery rate at a 5% false positive threshold was used to adjust for multiple comparison. During the study period, the mean DNAm PhenoAge and chronological age in our subjects were 68 and 73 years old, respectively. Using LME model, only lead and calcium were significantly associated with DNAmPhenoAccel. For example, an interquartile range (IQR, 0.0011 μg/m³) increase in lead was associated with a 1.29-year [95% confidence interval (CI): 0.47, 2.11] increase in DNAmPhenoAccel. Using BKM model, we selected PM₂.₅, lead, and silicon to be predictors for DNAmPhenoAccel. A subsequent LME model showed that only lead had significant effect on DNAmPhenoAccel: 1.45-year (95% CI: 0.46, 2.46) increase in DNAmPhenoAccel following an IQR increase in one-year lead. This is the first study that investigates long-term effects of PM₂.₅ components on DNAmPhenoAccel. The results demonstrate that lead and calcium contained in PM₂.₅ was robustly associated with DNAmPhenoAccel.
Afficher plus [+] Moins [-]Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors Texte intégral
2020
Hou, Jun | Xu, Xiaoya | Lan, Lin | Miao, Lingzhan | Xu, Yi | You, Guoxiang | Liu, Zhilin
The long-term contamination of soil by microplastics may pose risks that are often still not well understood, and the ecological effects of microplastics are mainly dependent on their environmental behavior in environments. This study used saturated quartz sand as a solid porous medium to study the migration and influencing factors of 40–48 μm polyethylene (PE) particles in saturated porous media. The breakthrough curves at different injection concentrations (0.3, 0.4, 0.5 mg/L), flow rates (1.0, 1.5, 2.0, 2.5 ml/L), porous medium particle sizes (1–2, 2–4 mm), ionic strengths (0, 0.01, 0.05 mol/L) and concentrations of fulvic acid (FA) (0, 5, 10 mg/L) were compared and analyzed. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to more accurately explain relevant transport behaviors. The results showed that the input concentration, flow rate, and particle size can affect the migration of PE particles individually or in combination. As ionic strength increased, the repulsion between microplastics and quartz sand gradually disappeared according to DLVO theory, and their attraction gradually strengthened. As a result, fewer microplastics could penetrate the sand column and reach the water body. With the continuous addition of FA, the repulsive energy between microplastics and quartz sand rose from DLVO theory, and the migration ability of microplastics initially increased before becoming stable because of the effect of straining. In all cases, the migration ability of PE was low (C/C₀ < 0.35), and most PE particles remained in the porous media during the whole experimental periods. This study provides new insights of understanding the migration of microplastics in environment.
Afficher plus [+] Moins [-]Deposition of α-pinene oxidation products on plant surfaces affects plant VOC emission and herbivore feeding and oviposition Texte intégral
2020
Mofikoya, Adedayo O. | Yli-Pirilä, Pasi | Kivimäenpää, Minna | Blande, James D. | Virtanen, Annele | Holopainen, Jarmo K.
White cabbage, Brassica oleracea, plants and artificial leaves covered with B. oleracea epicuticular wax were exposed to α-pinene and α-pinene oxidation products formed through the oxidation of α-pinene by ozone (O₃) and hydroxyl (OH) radicals. O₃ and OH-induced oxidation of α-pinene led to the formation of oxygenated volatile organic compounds (OVOCs) and secondary organic aerosol particles (SOA), referred to together as oxidation products (OP). Exposure of cabbage plants to O₃ and OH-induced α-pinene OP led to the deposition and re-emission of gas-phase OP by exposed cabbage plants. In a series of 2-choice bioassays, the specialist cruciferous herbivore, Plutella xylostella adults deposited less eggs on artificial leaves exposed to α-pinene OP than on control plants exposed to clean filtered air. P. xylostella larvae did not show a specific feeding preference when offered leaves from different exposure treatments. However, the generalist Indian stick insect, Carausius morosus, fed more on control filtered air-exposed plants than on those exposed to α-pinene OP. Taken together, our results show that exposure to α-pinene oxidation products affects VOC emissions of B. oleracea and alters P. xylostella oviposition and C. morosus feeding responses.
Afficher plus [+] Moins [-]Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress Texte intégral
2020
Ding, Zhi-Ming | ʻAdīl, Jamīl Aḥmad | Meng, Fei | Chen, Fan | Wang, Yong-Shang | Zhao, Xin-Zhe | Zhang, Shou-Xin | Miao, Yi-Liang | Xiong, Jia-Jun | Huo, Li-Jun
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Afficher plus [+] Moins [-]Reduced bioavailability of polycyclic aromatic hydrocarbons (PAHs) in sediments impacted by carbon manufacturing plant effluent: Evaluation by ex situ passive sampling method Texte intégral
2020
Endo, Satoshi | Yoshimura, Mitsuki | Kumata, Hidetoshi | Uchida, Masao | Yabuki, Yoshinori | Nakata, Haruhiko
Potential risks of polycyclic aromatic hydrocarbons (PAHs) in sediments of a Japanese bay contaminated by carbon manufacturing plant effluent were evaluated by calculating toxicity units (TUs). TUs calculated from the measured whole-sediment concentrations (Cwhole) were often higher than or close to 1, signaling a possible toxicity concern to benthic organisms. In contrast, TUs based on the freely dissolved pore water concentrations (Cfree) measured by an ex-situ passive sampling method with polyethylene strips were 0.0007–0.005, much lower than 1, indicating no effect. We also found that the fractions of black carbon in sediments of the contaminated bay were significantly higher than those of reference sites. Overall, we conclude that carbon manufacturing plant effluent substantially increases Cwhole of PAHs in sediments but also increases the fraction of carbonaceous particles that strongly retain PAHs. As a combined result, bioavailable concentrations (as expressed by pore water Cfree) of PAHs do not increase as much as Cwhole. The results of this study indicate that ecotoxicological risks of PAH contamination by carbon manufacturing plants should be evaluated by directly measuring pore water Cfree instead of Cwhole.
Afficher plus [+] Moins [-]Determination and uptake of abamectin and difenoconazole in the stingless bee Melipona scutellaris Latreille, 1811 via oral and topic acute exposure Texte intégral
2020
Prado, Fernanda Scavassa Ribeiro do | dos Santos, Dayana Moscardi | de Almeida Oliveira, Thiessa Maramaldo | Micheletti Burgarelli, José Augusto | Castele, Janete Brigante | Vieira, Eny Maria
Bees are considered as important providers of ecosystem services, acting via pollination process in crops and native plants, and contributing significantly to the maintenance of biodiversity. However, the decrease of bee's population has been observed worldwide and besides other factors, this collapse is also related to the extensive use of pesticides. In this sense, studies involving the assessment of adverse effects and the uptake of pesticides by bees are of great concern. This work presents an analytical method for the determination of the insecticide abamectin and the fungicide difenoconazole in the stingless bee Melipona scutellaris exposed via oral and topic to endpoints concentrations of active ingredients (a.i.) alone and in commercial formulations and the discussion about its mortality and uptake. For this purpose, QuEChERS (Quick, Easy, Cheap, Efficient, Rugged and Safe) acetate modified method was used for extraction and pesticides were determined by LC-MS/MS. The validation parameters have included: a linear range between 0.01 and 1.00 μg mL⁻¹; and LOD and LOQ of 0.038 and 0.076 μg g⁻¹ for abamectin and difenoconazole, respectively. The uptake of tested pesticides via oral and topic was verified by the accumulation in adult forager bees, mainly when the commercial product was tested. Mortality was observed to be higher in oral exposure than in topic tests for both pesticides. For abamectin in a commercial formulation (a.i.) no differences were observed for oral or topic exposure. On the other hand, for difenoconazole, topic exposure had demonstrated higher accumulation in bees, according to the increase of received dose. Through the results, uptake and the possible consequences of bioaccumulated pesticides are also discussed and can contribute to the knowledge about the risks involving the exposure of bees to these compounds.
Afficher plus [+] Moins [-]