Affiner votre recherche
Résultats 2341-2350 de 2,500
Phosphorus-31 nuclear magnetic resonance assignments of biogenic phosphorus compounds in sediment of an artificial Fuyangxin River, China
2014
Zhang, Wenqiang | Shan, Baoqing | Zhang, Hong | Tang, Wenzhong
River eutrophication could drastically influence the phosphorus (P) in the water and sediment. To understand the biogenic-P species, distribution and bioconversion, five sediment samples were collected from an artificial river, and analyzed by phosphorus-31 nuclear magnetic resonance (³¹P-NMR). The P pollution in the water and sediment were both severe. The average concentrations of total P (TP) and solution reactive phosphorus in the water were 3.0 and 2.6 mg L⁻¹, respectively, which surpass grade V of the national quality standard (China) and should not be used for any purpose. The river sediments accumulated significant inorganic phosphorus (Pi) and organic phosphorus (Po); in the P fractionation, the rank order of the P fractions was as follows: Ca-P > NaOH-Pi > Res-P > KCl-P > NaOH-Po, with average relative proportions of 25.1:16.8:6.6:1.7:1:0. Six P compounds were detected in the NaOH-EDTA extract by³¹P-NMR. Mono-P (8.96–29.58 %) was the dominant forms of biogenic-P, and other smaller fractions of biogenic-P were also observed, including pyro-P (0.22–0.86 %), DNA-P (0.75–2.03 %), phon-P (0–1.57 %), and lipids-P (0–2.66 %). The TP and biogenic-P decreased along the direction of flows, with their average relative proportions 7.97:1.20:1.49:1.00:1.00 and 40.87:2.34:3.46:1.60:1 from the upstream to downstream, respectively. The concentration and species of Po in NaOH-Po were lower than found in³¹P-NMR analysis in this research. Thus, the use of 0.25 M NaOH and 50 mM EDTA extracts and solution³¹P-NMR analysis was a more accurate method for quantifying biogenic-P in the river sediments than P fractionation.
Afficher plus [+] Moins [-]Influence of environmental factors on net N2 and N 2O production in sediment of freshwater rivers
2014
Zhao, Yongqiang | Xia, Yongqiu | Li, Bolun | Yan, Xiaoyuan
Denitrification is an important N removal process in aquatic systems but is also implicated as a potential source of global N₂O emissions. However, the key factors controlling this process as well as N₂O emissions remain unclear. In this study, we identified the main factors that regulate the production of net N₂and N₂O in sediments collected from rivers with a large amount of sewage input in the Taihu Lake region. Net N₂and N₂O production were strongly associated with the addition of NO₃⁻-N and NH₄⁺-N. Specifically, NO₃⁻-N controlled net N₂production following Michaelis–Menten kinetics. The maximum rate of net N₂production (Vₘₐₓ) was 116.3 μmol N₂-N m⁻² h⁻¹, and the apparent half-saturation concentration (kₘ) was 0.65 mg N L⁻¹. N₂O to N₂ratios increased from 0.18 ± 0.03 to 0.68 ± 0.16 with the addition of NO₃⁻-N, suggesting that increasing NO₃⁻-N concentrations favored the production of N₂O more than N₂. The addition of acetate enhanced net N₂production and N₂O to N₂ratios, but the ratios decreased by about 59.5 % when acetate concentrations increased from 50 to 100 mg C L⁻¹, suggesting that the increase of N₂O to N₂ratios had more to do with the net N₂production rate rather than acetate addition in this experiment. The addition of Cl⁻did not affect the net N₂production rates, but significantly enhanced N₂O to N₂ratios (the ratios increased from 0.02 ± 0.00 to 0.10 ± 0.00), demonstrating that the high salinity effect might have a significant regional effect on N₂O production. Our results suggest that the presence of N-enriching sewage discharges appear to stimulate N removal but also increase N₂O to N₂ratios.
Afficher plus [+] Moins [-]Acute toxicity of copper, lead, cadmium, and zinc to early life stages of white sturgeon (Acipenser transmontanus) in laboratory and Columbia River water
2014
Vardy, David W. | Santore, Robert | Ryan, Adam | Giesy, John P. | Hecker, Markus
Populations of white sturgeon (Acipenser transmontanus) are in decline in North America. This is attributed, primarily, to poor recruitment, and white sturgeon are listed as threatened or endangered in several parts of British Columbia, Canada, and the United States. In the Columbia River, effects of metals have been hypothesized as possible contributing factors. Previous work has demonstrated that early life stage white sturgeon are particularly sensitive to certain metals, and concerns over the level of protectiveness of water quality standards are justified. Here we report results from acute (96-h) toxicity tests for copper (Cu), cadmium (Cd), zinc (Zn), and lead (Pb) from parallel studies that were conducted in laboratory water and in the field with Columbia River water. Water effect ratios (WERs) and sensitivity parameters (i.e., median lethal accumulations, or LA50s) were calculated to assess relative bioavailability of these metals in Columbia River water compared to laboratory water, and to elucidate possible differences in sensitivity of early life stage white sturgeon to the same concentrations of metals when tested in the different water sources. For Cu and Pb, white sturgeon toxicity tests were initiated at two life stages, 8 and 40 days post-hatch (dph), and median lethal concentrations (LC50s) ranged between 9–25 μg Cu/L and 177–1,556 μg Pb/L. LC50s for 8 dph white sturgeon exposed to Cd in laboratory water and river water were 14.5 and 72 μg/L, respectively. Exposure of 8 dph white sturgeon to Zn in laboratory and river water resulted in LC50s of 150 and 625 μg/L, respectively. Threshold concentrations were consistently less in laboratory water compared with river water, and as a result, WERs were greater than 1 in all cases. In addition, LA50s were consistently greater in river water exposures compared with laboratory exposures in all paired tests. These results, in combination with results from the biotic ligand model, suggest that the observed differences in toxicity between river water exposures and laboratory water exposures were not entirely due to differences in water quality and metal bioavailability but rather in combination with differences in fish sensitivity. It is hypothesized that differences in concentrations of calcium in the different water sources might have resulted in differences in acquired sensitivity of sturgeon to metals. Canadian water quality guidelines, US national criteria for the protection of aquatic life, and water quality criteria for the state of Washington were less than LC50 values for all metals and life stages tested in laboratory and Columbia River water. With the exception, however, that 40 dph white sturgeon exposed to Cu in laboratory water resulted in threshold values that bordered US national criteria and criteria for the state of Washington.
Afficher plus [+] Moins [-]Low-cost adsorbent prepared from sewage sludge and corn stalk for the removal of COD in leachate
2014
He, Ying | Liao, Xiaofeng | Liao, Li | Shu, Wei
Sewage sludge (SS) with corn stalk (CS) was used to prepare SS-based activated carbon (SAC) by pyrolysis with ZnCl₂. The effects of mixing ratio on surface area and pore size distribution, elemental composition, surface chemistry, and morphology were investigated. The results demonstrated that the addition of CS into SS samples improved the surface area (from 92 to 902 m²/g) and the microporosity (from 1.2 to 4.1 %) of the adsorbents and, therefore, enhancing the adsorption performance. The removal of leachate chemical oxygen demand (COD) was also determined. It was found that the COD removal rate reached 85 % at pH 4 with the SAC (90 wt% CS) dosage of 2 % (g/mL) and an adsorption time of 40 min. The adsorption experimental data were fitted by both Langmuir and Freundlich adsorption isotherms. Long-chain alkanes and refractory organics were found in raw leachate, but could be removed by SAC largely.
Afficher plus [+] Moins [-]Toxic effect of metal cation binary mixtures to the seaweed Gracilaria domingensis (Gracilariales, Rhodophyta)
2014
Mendes, Luiz Fernando | Stevani, Cassius Vinicius | Zambotti-Villela, Leonardo | Yokoya, Nair Sumie | Colepicolo, Pio
The macroalga Gracilaria domingensis is an important resource for the food, pharmaceutical, cosmetic, and biotechnology industries. G. domingensis is at a part of the food web foundation, providing nutrients and microelements to upper levels. As seaweed storage metals in the vacuoles, they are considered the main vectors to magnify these toxic elements. This work describes the evaluation of the toxicity of binary mixtures of available metal cations based on the growth rates of G. domingensis over a 48-h exposure. The interactive effects of each binary mixture were determined using a toxic unit (TU) concept that was the sum of the relative contribution of each toxicant and calculated using the ratio between the toxicant concentration and its endpoint. Mixtures of Cd(II)/Cu(II) and Zn(II)/Ca(II) demonstrated to be additive; Cu(II)/Zn(II), Cu(II)/Mg(II), Cu(II)/Ca(II), Zn(II)/Mg(II), and Ca(II)/Mg(II) mixtures were synergistic, and all interactions studied with Cd(II) were antagonistic. Hypotheses that explain the toxicity of binary mixtures at the molecular level are also suggested. These results represent the first effort to characterize the combined effect of available metal cations, based on the TU concept on seaweed in a total controlled medium. The results presented here are invaluable to the understanding of seaweed metal cation toxicity in the marine environment, the mechanism of toxicity action and how the tolerance of the organism.
Afficher plus [+] Moins [-]Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India
2014
Pradhan, Jatindra Kumar | Kumar, Sudhir
Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.
Afficher plus [+] Moins [-]Analysis of ZVI corrosion products and their functions in the combined ZVI and anaerobic sludge system
2014
Zhu, Liang | Gao, Kaituo | Jin, Jie | Lin, Haizhuan | Xu, Xiangyang
The zero-valent iron (ZVI) corrosion products and their functions were investigated in the combined ZVI and anaerobic sludge system. Results showed that ZVI corrosion occurred, and the reductive transformation and dechlorination of p-chloronitrobenzene (p-ClNB) by the anaerobic sludge were enhanced. In the combined systems with different types of ZVIs and mass ratios of anaerobic sludge to ZVI, a considerable amount of suspended iron compounds was produced and coated onto the microbial cells. However, the microbial cellular structure was damaged, and the p-ClNB reductive transformation was affected adversely after the long-term presence of nanoscale ZVI (NZVI) or reduced ZVI (RZVI) with a high concentration of 5 g L⁻¹. The oxidized products of FeOOH and Fe₃O₄were found on the surface of ZVI, which are speculated to act as electron mediators and consequently facilitate the utilization of electron donors by the anaerobic microbes.
Afficher plus [+] Moins [-]Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles
2014
Chen, Xi | Yao, Xiaoyan | Yu, Chunna | Su, Xiaomei | Shen, Chaofeng | Chen, Chen | Huang, Ronglang | Xu, Xinhua
Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2′,4,4′,5,5′-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2′,4,4′,5,5′-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.
Afficher plus [+] Moins [-]Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk
2014
Kuśmierz, Marcin | Oleszczuk, Patryk
The objectives of the study were the identification of the source of contamination of soils and estimation of the potential cancer risk that may be caused by contact with soils situated in the vicinity of biochar production sites. Samples of soils collected in the immediate vicinity of traditional biochar-producing plants, located within the area of the Bieszczady National Park (Poland), were analysed for the content of polycyclic aromatic hydrocarbons (PAHs). The sum of the content of 16 PAHs varied within the range of 1.80–101.3 μg/g, exceeding the norms permitted in many European countries. The calculated coefficients on the basis of which one can determine the origin of PAHs (molecular diagnostic ratios) demonstrated that the potential source of PAHs in the soils may be processes related with the production of biochar. Estimation on the basis of the results of incremental lifetime cancer risks (ILCRs) within the range of 2.33 · 10⁻⁴–1.05 · 10⁻¹indicated that the soils studied may constitute a significant cancer risk for persons who have contact with them. The values of ILCRS should be considered as at least high, which permits the conclusion that sites of that type may create a hazard to human health.
Afficher plus [+] Moins [-]Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions
2014
French, Helen K. | van der Zee, Sjoerd E.A.T.M.
This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers’ perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated.
Afficher plus [+] Moins [-]