Affiner votre recherche
Résultats 371-380 de 448
Partitioning of Hg Between Solid and Dissolved Organic Matter in the Humus Layer of Boreal Forests
2008
Åkerblom, Staffan | Meili, Markus | Bringmark, Lage | Johansson, Kjell | Kleja, Dan Berggren | Bergkvist, Bo
The mobility of mercury (Hg) deposited on soils controls the concentration and toxicity of Hg within soils and in nearby streams and lakes, but has rarely been quantified under field conditions. We studied the in situ partitioning of Hg in the organic top layer (mor) of podsols at two boreal forest sites differing in Hg deposition and climatic regime (S. and N. Sweden, with pollution declining to the north). Soil solution leaching from the mor layer was repeatedly sampled using zero-tension lysimeters over 2 years, partly in parallel with tension lysimeters. Concentrations of Hg and dissolved organic carbon (DOC) were higher while pH was lower at the southern site (means ± SD: Hg = 44 ± 15 ng L-¹, DOC = 63.0 ± 31.3 mg L-¹, pH = 4.05 ± 0.53) than at the northern site (Hg = 22 ± 6 ng L-¹, DOC = 41.8 ± 12.1 mg L-¹, pH = 4.28 ± 0.43). There was a positive correlation over time between dissolved Hg and DOC at both sites, even though the DOC concentration peaked during autumn at both sites, while the Hg concentration remained more constant. This correlation is consistent with the expected strong association of Hg with organic matter and supports the use of Hg/C ratios in assessments of Hg mobility. In the solid phase of the overlying Of layer, both Hg concentrations and Hg/C ratios were higher at the southern site (means ± SD: 0.34 ± 0.06 μg g-¹ dw and 0.76 ± 0.14 μg g-¹ C, respectively) than at the northern site (0.31 ± 0.05 μg g-¹ dw and 0.70 ± 0.12 μg g-¹ C, respectively). However, concentrations in the solid phase differed less than might be expected from the difference in current atmospheric input, suggesting that the fraction of natural Hg is still substantial. At both sites, Hg/C ratios in the upper half of the mor layer were only about two thirds of those in the lower half, suggesting that the recent decrease in anthropogenic Hg deposition onto the soil is offset by a natural downward enrichment of Hg due to soil decomposition or other processes. Most interestingly, comparison with soil leachate showed that the average Hg/C ratios in the dissolved phase of the mor layers at both sites did not differ from the average Hg/C ratios in the overlying solid organic matter. These results indicate a simple mobilisation with negligible fractionation, despite differences in Hg deposition patterns, soil chemistry and climatic regimes. Such a straight-forward linkage between Hg and organic matter greatly facilitates the parameterisation of watershed models for assessing the biogeochemical fate, toxic effect and critical level of atmospheric Hg input to forest soils.
Afficher plus [+] Moins [-]Toxicity of Residual Chlorines from Hypochlorite-treated Seawater to Marine Amphipod Hyale barbicornis and Estuarine Fish Oryzias javanicus
2008
Añasco, Nathaniel C. | Koyama, Jiro | Imai, Shoko | Nakamura, Kuniaki
To assess possible adverse effects of residual chlorines from hypochlorite-treated seawater to non-target marine organisms, bioassays were carried out on marine amphipod Hyale barbicornis and estuarine fish Oryzias javanicus. Acute toxicity tests were first conducted using various concentrations of sodium hypochlorite (NaOCl) followed by a long-term exposure to residual chlorines from a test water treated with 1 mg L⁻¹ NaOCl. Results showed that NaOCl was acutely toxic to both organisms. However, long-term exposure to residual chlorines from NaOCl-treated waters caused no major adverse effects to both organisms under laboratory conditions since free chlorines in the treated water was reduced to about 10% by 23-h holding and 1-h aeration. No H. barbicornis died but residual chlorine-exposed juveniles had significantly shorter body lengths at the end of exposure. Residual chlorine-exposed O. javanicus also showed no significant differences to that of the control in all measured endpoints except for hatching time. The results suggest that using 1 mg L⁻¹ NaOCl for disinfection of ballast waters will produce residual chlorines that is far below the LC50 and EC50 of H. barbicornis and O. javanicus even on a long-term basis.
Afficher plus [+] Moins [-]Plant and Soil System Responses to Ozone After 3 Years in a Lysimeter Study with Juvenile Beech (Fagus sylvatica L.)
2008
Pritsch, K | Ernst, D | Fleischmann, F | Gayler, S | Grams, T. E. E | Göttlein, A | Heller, W | Koch, N | Lang, H | Matyssek, R | Munch, J. C | Olbrich, M | Scherb, H | Stich, S | Winkler, J. B | Schloter, M
A lysimeter study was performed to monitor effects of elevated ozone on juvenile trees of Fagus sylvatica L. as well as on the plant-soil system. During a fumigation period over almost three growing seasons, parameters related to plant growth, phenological development and physiology as well as soil functions were studied. The data analyses identified elevated ozone to delay leaf phenology at early and to accelerate it at late developmental stages, to reduce growth, some leaf nutrients (Ca, K) as well as some soluble phenolics (hydroxycinnamic acid derivatives, total flavonol glycosides). No or very weak ozone effects were found in mobile carbon pools of leaves (starch, sucrose), and other phenolic compounds (flavans). Altered gene expression related to stress and carbon cycling corresponded well with findings from leaf phenology and chemical composition analyses indicating earlier senescence and oxidative stress in leaves under elevated ozone. Conversely in the soil system, no effects of ozone were detected on soil enzyme activities, rates of litter degradation and lysimeter water balances. Despite the fact that the three reported years 2003-2005 were climatically very contrasting including a hot and dry as well as an extremely wet summer, and also mild as well as cold winters, the influence of ozone on a number of plant parameters is remarkably consistent, further underlining the phytotoxic potential of elevated tropospheric ozone levels.
Afficher plus [+] Moins [-]Case Studies from Turkey: Xenobiotic-containing Industries, Wastewater Treatment and Modeling
2008
Pehlivanoglu-Mantas, E | Insel, G | Karahan, O | Cokgor, E Ubay | Orhon, D
Xenobiotic compounds are widely used in several industries; hence they frequently appear in industrial wastewaters. It is a well-known fact that even the discharge of conventionally treated wastewater may have adverse effects on the receiving water environment. Turkey, a developing EU applicant country, has many industrial sectors producing large amounts of xenobiotic-containing wastewaters. The problem is only enlarged by the lack of monitoring of these substances due to the deficiencies associated with their analysis and detection. Thus, studies in Turkey are based on the use of some collective parameters as a substitute for the xenobiotic itself. Biological, physicochemical, and integrated treatment technologies have been investigated for the removal and/or minimization of the possible adverse effects of xenobiotics in industrial wastewaters. In this respect, this paper provides an overview of the studies conducted on xenobiotic-containing wastewaters from specific industries in Turkey. Although the studies add invaluable information to the scientific background on the subject, new research on the exact biochemical mechanisms of xenobiotic biodegradation will further extend our understanding for improving treatment.
Afficher plus [+] Moins [-]Relationship Between Fecal Indicators in Sediment and Recreational Waters in a Danish Estuary
2008
Roslev, Peter | Bastholm, Søren | Iversen, Niels
The European Union has introduced a new bathing water directive where future classification of recreational waters will be based on the microbial parameters Escherichia coli, and intestinal enterococci. Introduction of enterococci as a new quality parameter may pose a challenge in some areas because relatively less is known about these organisms compared to E. coli. In the present study, the relative abundance of intestinal enterococci, E. coli, and ten fecal sterol and stanol biomarkers were investigated in water and sediment at two estuarine beach sites affected by fecal pollution. In the bathing water, enterococci were relatively more abundant at low E. coli concentrations. In the sediment, enterococci were generally more abundant than E. coli with surface concentrations between 1.0 × 10² and 4.5 × 10³ CFU cm⁻³. Enterococci populations were relatively similar in water and sediment, and were phenotypically different from that of nearby pollution sources. The putative human specific genetic marker esp in Enterococcus faecium was not detected in water or sediment samples despite occasional inputs of human waste from storm water overflows. Sterol and stanol profiles suggested a direct link between water and sediment pollution profiles on days with wind conditions that facilitated resuspension. Sediment resuspension may occur at wind speeds exceeding 6–8 m s⁻¹, and could contribute significantly to enterococci concentrations in the overlying water. The study emphasized that recontamination of the water column due to wind induced resuspension should be considered when evaluating indicator levels and microbial hazards in estuarine recreational waters.
Afficher plus [+] Moins [-]Chemical, Physical, and Risk Characterization of Natural Gas Storage Produced Waters
2008
Johnson, Brenda M. | Kanagy, Laura E. | Rodgers, John H., Jr | Castle, James W.
Natural gas storage produced waters (NGSPWs) are brought to the surface when natural gas is reclaimed from underground storage. These waters may have a variety of constituents of concern that need to be treated before the water can be reused or discharged to receiving aquatic systems. The objective of this study was to characterize NGSPWs to discern potential constituents of concern that may limit surface discharge or beneficial reuse of these waters. We conducted a strategic review of literature, analyses of produced water composition records, and analyses of produced water samples provided by natural gas storage companies. Although NGSPWs varied widely in composition, primary constituents of concern included: chlorides (salinity), metals, metalloids, and organic compounds (e.g. oil and grease). Chlorides are the predominant constituent of concern in most NGSPWs. Strategies for risk mitigation of NGSPWs will need to be both robust and site specific to deal with the diverse composition of these waters.
Afficher plus [+] Moins [-]Imaging Chemical Patches on Near-surface Atmospheric Dust Particles with NanoSIMS 50 to Identify Material Sources
2008
Krein, A | Udelhoven, T | Audinot, J.-N | Hissler, C | Guignard, C | Pfister, L | Migeon, H.-N | Hoffmann, L
The increase of traffic and the rising energy consumption mean a challenge to the air pollution control and to environmental protection. Measures of air pollution control concentrated primarily on the reduction of gaseous pollutants. However, in the field of air hygiene in Central Europe, especially the load of near-surface atmospheric dust becomes threatening to human health. A SIMS microprobe for ultra fine feature analysis is used to image the elemental composition at the surface of submicrometer urban dust particles collected at two measurement stations in the Grand Duchy of Luxembourg. The NanoSIMS 50 has been chosen because it creates one intensity image for each selected element in a high spatial resolution down to 50 nm. The atmospheric fine dust consists of a mixture of organic and inorganic compounds. The elemental composition at the surface of particles was studied using a global image segmentation technique to separate the signal from the background of the particles. The analysis of the binary intensity images was carried out using several shape and proximity measures. The patch shape complexity and distribution for industrial/urban particles were found to differ significantly from the solids collected from a forest site. We conclude that the methodology developed in the study is a reliable tool to differentiate between potential sources of airborne particulate matter.
Afficher plus [+] Moins [-]Leaching of Metals from Oxidising Sulphide Mine Tailings with and without Sewage Sludge Application
2008
Stjernman Forsberg, Lovisa | Gustafsson, Jon-Petter | Berggren Kleja, Dan | Ledin, Stig
A 20-month column experiment investigated leaching of Al, Cu, Mn, Ni, Zn, Cd and Pb during sulphide oxidation in mine tailings with and without sewage sludge (SS) amendment. Leachate pH decreased gradually in all columns during the experiment, irrespective of treatment, due to sulphide oxidation. As the degree of sulphide oxidation, and thus the pH trajectory, differed between replicates (n = 3), running data for each column used are reported separately and the relationships between sulphide oxidation, metal leaching and treatment in each column compared. Mean pH in the columns correlated negatively with total amounts of leached SO₄ ²⁻. In the beginning of the experiment the leachate concentrations of Al, Cu, Zn, Ni and Pb were higher in SS-treated columns due to high initial concentrations of dissolved organic carbon. As leaching proceeded, however, the amounts of Al, Cu, Mn and Ni leached from the columns were closely related to the degree of sulphide oxidation in each column, i.e. to its mean pH. There were no statistically significant differences between treatments regarding the total amounts of metals leached and thus addition of sewage sludge to the tailings appeared to play a minor role for metal leaching patterns. Peak concentrations of Al and Cu in the leachate from untreated tailings and of Zn in the leachate from both untreated and SS-treated tailings at pH 4 exceeded national background values for groundwater.
Afficher plus [+] Moins [-]Determination of Environmental Quality of a Drinking Water Reservoir by Remote Sensing, GIS and Regression Analysis
2008
Coskun, H Gonca | Tanik, Aysegul | Alganci, Ugur | Cigizoglu, H Kerem
Istanbul, housing a population over ten million and with population increase rate of approximately twice that of Turkey, is one of the greatest metropolitan cities of the world. As a consequence of rapid population growth and industrial development, Omerli watershed is highly affected by wastewater discharges from the residential areas and industrial plants. The main objective of this study is to investigate the temporal assessment of the land-use/cover of the Omerli Watershed and the water quality changes in the Reservoir. The study is mainly focused on the acquisition and analysis of the Satellite Probatoire de l'Observation de la Terre (SPOT) (1993), Indian Remote Sensing satellite (IRS) (1996 and 2000) and Landsat Thematic Mapper (TM) (2004, 2005, and 2006) satellite images that reflect the drastic land-use/cover changes utilizing the ground truth measurements. The rapid, uncontrolled, and illegal urbanization coupled with insufficient infrastructure has caused the deterioration of the water quality within the past two decades in the Omerli watershed. The water quality analysis of the drinking water Reservoir within the watershed is investigated using 2006 dated Landsat TM satellite digital data. The results are compiled and compared with the water quality measurements of parameters like total nitrogen (TN), the total phosphorus (TP), chlorophyll a (CL) and total dissolved solids (TDS). The observed reflectance shows a strong relationship with the water quality parameters and thus, the satellite data proved to provide a useful index of TN, TP, CL and TDS. Moreover, the linkage between the water quality parameters and the individual band reflectance values are supported by multiple regression analysis.
Afficher plus [+] Moins [-]PM₁₀ and PM₂.₅ Levels in the Eastern Mediterranean (Akrotiri Research Station, Crete, Greece)
2008
Lazaridis, M. | Dzumbova, L. | Kopanakis, I. | Ondracek, J. | Glytsos, T. | Aleksandropoulou, V. | Voulgarakis, A. | Katsivela, E. | Mihalopoulos, N. | Eleftheriadis, K.
Particulate matter measurements (PM₁₀, PM₂.₅) using a beta radiation attenuation monitor were performed at the Akrotiri research station (May 2003-March 2006) on the island of Crete (Greece). The mean PM₁₀ concentration during the measuring period (05/02/03-03/09/04) was equal to 35.0 ± 17.7 μg/m³ whereas the mean PM₂.₅ concentration (03/10/04-04/02/06) was equal to 25.4 ± 16.5 μg/m³. The aerosol concentration at the Akrotiri station shows a large variability during the year. Mean concentrations of particulate matter undergo a seasonal change characterised by higher concentrations during summer [PM₁₀, 38.7 ± 10.8 μg/m³ (2003); PM₂.₅, 27.9 ± 8.7 μg/m³ (2004) and 27.8 ± 9.7 μg/m³ (2005)] and lower concentrations during winter [PM₁₀, 28.7 ± 22.5 μg/m³ (2003/2004); PM₂.₅, 21.0 ± 13.0 μg/m³ (2004/2005) and 21.4 ± 21.9 μg/m³ (2005/2006)]. Comparative measurements of the PM₁₀ concentration between the beta radiation attenuation monitor, a standardized low volume gravimetric reference sampler and a low volume sequential particulate sampler showed that PM₁₀ concentrations measured by the beta radiation attenuation monitor were higher than values given by the gravimetric samplers (mean ratio 1.17 ± 0.11 and 1.21 ± 0.08, respectively). Statistical and back trajectory analysis showed that elevated PM concentrations (PM₁₀, 93.8 ± 49.1 μg/m³; PM₂.₅: 102.9 ± 59.9 μg/m³) are associated to desert dust events. In addition regional transport contributes significantly to the aerosol concentration levels whereas low aerosol concentrations were observed during storm episodes.
Afficher plus [+] Moins [-]