Affiner votre recherche
Résultats 391-400 de 753
Rural O₃ Levels in the Middle Ebro Basin During the Plant Growing Season Texte intégral
2010
Gonzalez, Laura | Bermejo, Raúl | Parra, María Asunción | Elustondo, David | Garrigó, Jordi | Santamaría, Jesús Miguel
Ground-level dynamics of O₃, NO x and benzene, toluene, ethylbenzene and xylenes were characterised at rural sites in the medium Ebro River Basin (Northern Spain) from April to September (2003-2007) and by means of automated and passive monitoring. The study registered high O₃ levels within the area, which were influenced by traffic emissions, and a monthly evolution of these levels consistent with the occurrence of a broad summer maximum, typical of polluted areas. The mean ozone concentration registered in the studied area by means of passive sampling was 87 ± 12 μg m⁻³. The 2008/50/EC objective value for the protection of vegetation was widely exceeded during this study (AOT40 = 57,147 ± 14,114 μg m⁻³ h), suggesting that current ambient levels may pose a risk for crops and vegetation in this important agroindustrial region.
Afficher plus [+] Moins [-]Biological and Artificial Matrixes as PAH Accumulators: An Experimental Comparative Study Texte intégral
2010
Skert, Nicola | Falomo, Jari | Giorgini, Luigi | Acquavita, Alessandro | Capriglia, Lorenzo | Grahonja, Roberto | Miani, Nordio
In order to find out a new effective accumulator of polycyclic aromatic hydrocarbons (PAHs) useful for monitoring studies on a large scale and low costs, the accumulation capacity of both biological and artificial matrixes (mosses and polyester fibers, respectively) has been tested. For this purposes, Hypnum cupressiforme and dacron® were exposed to pollution airborne in two sites located nearby an active iron industry and in center of the town of Trieste, where high PAH pollution spots, due to vehicular traffic, are usually detected. The samplers were exposed in six sampling sessions for 21 days. The results obtained were compared with data collected by active PAH samplers, usually employed for official widespread monitoring. The level of correlation between the data sets was calculated. Furthermore, a repeatability study of data was performed. According to the results, both matrixes are good PAH accumulators, though they show different skills.
Afficher plus [+] Moins [-]Nitrogen Leaching in Intensive Cropping Systems in Tam Duong District, Red River Delta of Vietnam Texte intégral
2010
Mai, V. T. | Keulen, H. van | Roetter, R.
The environmental and economic consequences of nitrogen (N) lost in rice-based systems in Vietnam is important but has not been extensively studied. The objective of this study was to quantify the amount of N lost in major cropping systems in the Red River Delta. An experiment was conducted in the Red River Delta of Vietnam, on five different crops including rose, daisy, cabbage, chili, and a rice-rice-maize rotation during 2004 and 2005. Core soil samples were taken periodically in 20-cm increments to a depth of 1 m and analyzed for nitrate-nitrogen and ammonium-nitrogen. The results indicate appreciable leaching losses on N in high-rainfall and irrigation conditions, especially when fertilizer application was not well synchronized with crop N demand. Highest annual leaching losses of N were recorded in flowers with 185-190 mm of percolation and 173-193 kg N ha⁻¹, followed by vegetable (cabbage and chili) with 120-122 mm of percolation and 112-115 kg N ha⁻¹, while it was lowest in rice with about 50 kg N ha⁻¹. We developed a simple N transport model that combined water and N movement through the soil profile. In most cases, the model accurately predicted the seasonal dynamics of N as well as N flow between soil layers and the amounts of N lost from the soil profile. The simulated results of N leaching with soil “puddling” conditions illustrate the advantage of an impermeable or hardpan layer in increasing water and nutrient use efficiencies in these soils. These model results also showed that it is possible to accurately estimate N losses with only a few parameters and helped us identify the risks of N leaching.
Afficher plus [+] Moins [-]Fate of Chlorinated Benzenes in Laboratory Peat and Pozzolana Filters Texte intégral
2010
Cottin, Nathalie | Merlin, Gerard
The removal of chlorinated benzenes (CBs) from the compartments and from polluted industrial sites is of great public interest for the decontamination of polluted water and for the protection of the environment. Biological degradation could be considered as a feasible process to eliminate these compounds from the environment as soil or groundwater. A research program in progress since the year 2007 was initiated to investigate the capacity of eco-remediation of CB-contaminated groundwater using a pilot-scale subsurface flow constructed wetland. In order to assess the removal efficiency of these compounds and to evaluate the biological activities, column experiments were performed. The fate of three CBs was investigated by feeding spiked tap water through laboratory columns filled with two different solid-state materials: peat and pozzolana. In order to stimulate biological activity, organic matter coming from aged vertical flow constructed wetland was added to the media. Concentrations of CBs in water effluent and in air and biological activities were monitored during 4 months. At the end of the experimental period, CB concentrations in the depth of columns were determined and a mass balance was calculated for the CBs. Removal efficiencies of the laboratory columns were >98% in the peat columns and situated around 87% to 95% in the pozzolana columns, indicating the suitability of the experimental systems for the removal of CBs. Higher effluent CB concentrations from the pozzolana columns were detected. Concentration of CBs in ambient air indicates that volatilization was low. ATP monitoring, reduction of tetrazolium violet, and exopolysaccharide determination indicated considerable biological activity with variations according to column depth and carrier material.
Afficher plus [+] Moins [-]Recovery from Mercury Contamination in the Second Songhua River, China Texte intégral
2010
Zhang, Z. S. | Sun, X. J. | Wang, Q. C. | Zheng, D. M. | Zheng, N. | Lv, X. G.
Mercury pollution in the Second Songhua River (SSR) was serious in the last century due to effluent from a chemical corporation. Effects of riverine self-purification on mercury removal were studied by comparing monitoring data of mercury concentrations varieties in water, sediment, and fish in the past, about 30 years. The present work suggested that a river of such a size like the SSR possessed the potential ability to recover from mercury pollution under the condition that mercury sources were cut off, though it needs a very long time, which might be several decades or even a century of years. During the 30 years with no effluent containing mercury input, total mercury (T-Hg) of water and sediment in some typical segments, mostly near the past effluent outlet, had decreased radically but still higher than the background values, though the decrease amplitudes were over 90% compared with that in 1975. T-Hg had decreased by more than 90% in most fishes, but some were still not suitable for consumption. Methylmercury concentrations (MeHg) of water, sediment, and fish were higher or close to the background levels in 2004. In the coming decades, the purification processes in the SSR would be steady and slow for a long period.
Afficher plus [+] Moins [-]Ecological Restoration of Polluted Plain Rivers Within the Haihe River Basin in China Texte intégral
2010
Wang, W. | Tang, X. Q. | Huang, S. L. | Zhang, S. H. | Lin, C. | Liu, D. W. | Che, H. J. | Yang, Q. | Scholz, Miklas
The Haihe River basin is located in the north of China and has an area of 318,000 km². The region is politically important and economically advanced. For example, the Haihe River basin sustains a population of more than 120 million and generates a gross domestic production of approximately 2,600 billion Chinese Yuan. The ecological health of plain rivers within the Haihe River basin of China is questionable because of severe water shortages, considerable water, soil and air pollution, and the destruction of the natural river morphologies. It is therefore necessary to establish a generic and theoretical restoration methodology to guide river ecological restoration efforts in the future. Thirteen methodologies and technologies were selected from an existing suit of ecosystem restoration techniques currently applied to the Haihe River catchment. These technologies were further divided into three types: water quantity adjustment, water purification, and habitat improvement. The most suitable ecological restoration techniques were selected as a function of all three types. However, direct methods of addressing water quantity and quality problems were identified as critical for the success of future restoration efforts. Examples of the application of the conceptual ecological restoration model for the representative plain rivers Beiyunhe, Yongding and Wei, all located within the Haihe River Basin, are also assessed. The conceptual model provides practical solutions to pollution problems, is generic in nature, and could therefore be applied to other polluted watercourses in densely populated regions in the developed and developing world.
Afficher plus [+] Moins [-]Effects of Enhanced UV-B Radiation on N₂O Emission in a Soil-Winter Wheat System Texte intégral
2010
Hu, Zhenghua | Jiang, Jingyan | Chen, Shutao | Liu, Qiaohui | Niu, Chuanpo
An outdoor pot experiments was conducted to investigate the effects of enhanced ultraviolet-B (UV-B) radiation on nitrous oxide (N₂O) emissions from soil-winter wheat systems. The enhanced UV-B radiation treatments were simulated by 20% increase in its intensity. N₂O fluxes were measured with a static opaque chamber-gas chromatograph method. The results showed that enhanced UV-B radiation did not change the seasonal patterns of N₂O emissions. Compared to the controls, the enhanced UV-B radiation reduced N₂O fluxes by 16.4% (p = 0.015) during the elongation-booting stage, while it had no significant effects on N₂O fluxes in the turning-green and heading-maturity phases. During the turning green-overall heading span, the accumulative N₂O was largely decreased by the enhanced UV-B radiation (p < 0.05). From the overall heading to maturity, however, the effects of enhanced UV-B on N₂O emissions were not pronounced (p > 0.10). At the elongation-booting stage, enhanced UV-B increased soluble proteins content in leaves, NO ₃ ⁻ -N and NO ₄ ⁺ -N content in rhizosphere soil, and soil microbial biomass C (C mic) and N (N mic; p < 0.05), as well as microbial biomass C:N ratio changing from 5.0 to 6.8. Our findings suggest that the effects of enhanced UV-B radiation on N₂O emissions differed with winter wheat developmental stages. To assess the overall effects of enhanced UV-B radiation on N₂O emissions from agroecosystems, nevertheless, more field measurements deserve to be carried out in various cropping systems.
Afficher plus [+] Moins [-]Atmospheric Deposition of Nitrogen and Sulfur in the Yellow Sea Region: Significance of Long-Range Transport in East Asia Texte intégral
2010
Kim, J (Jin-Yong) | Ghim, Y. S. | Lee, S. B. | Moon, K. C. | Shim, S.-G. | Bae, G. N. | Yoon, S.-C.
The amounts of nitrogen and sulfur deposited in the region of the Yellow Sea in both dry and wet forms were estimated focusing on the period between 1999 and 2000. Dry deposition fluxes were obtained using concentrations from ground stations on both Korean and Chinese sides and from shipboard and aircraft measurements. Wet deposition fluxes were determined at ground stations on the Korean side. The dry deposition flux over the Yellow Sea was much greater than those for other world oceans. As a whole, the amounts of wet depositions of nitrogen and sulfur were 1.9 and 1.5 times larger than the amounts of respective dry depositions. Substantial influence from China caused by high emissions in East China and westerly wind was possibly suggested. However, the influence from nitrogen emission in Korea was also confirmed.
Afficher plus [+] Moins [-]Application of PM10′s Statistical Distribution to Air Quality Management—A Case Study in Central Greece Texte intégral
2010
Papanastasiou, Dimitris K. | Melas, Dimitris
Ambient aerosol concentrations have been implicated in human health effects, in visibility reduction in urban and regional areas, in acid deposition and in perturbing the Earth’s radiation balance. The main concern of the air quality managers is to achieve compliance to the established air quality standards (AQS). As AQS are exceeded in numerous sites worldwide, it is essential to reduce the emissions. Having decided which statistical distribution fits well to the PM10 parent distribution, it is feasible to estimate the reduction in emissions that is required in order to meet AQS. In this study, it is verified that the PM10 concentration distribution can be adequately simulated by lognormal distribution, a conclusion drawn by the calculation of several statistical indexes. The study area is the city of Volos in central Greece, which is experiencing an unpleasant situation concerning the levels of PM10 pollution. The probability density function of lognormal distribution is capable to predict the number of days when the European Union (EU) AQS for PM10 concentration are exceeded in Volos area. Furthermore, the minimum reduction in current emission sources of PM10 required in order to meet the air quality regulations that are established by the EU is calculated for the study area and is found to be ~33%. The results could be utilized as reference for air pollution control strategy.
Afficher plus [+] Moins [-]Heavy Metal Uptake and Extraction Potential of Two Bechmeria nivea (L.) Gaud. (Ramie) Varieties Associated with Chemical Reagents Texte intégral
2010
Zhou, Jian-hua | Yang, Qing-wei | Lan, Chong-yu | Ye, Zhi-hong
Two varieties of Bechmeria nivea (L.) Gaud. (Ramie), namely, triploid Tri-2 and diploid Xiangzhu-3, were potted with soils from Guangdong for 15 weeks and treated with 10 mmol kg⁻¹ EDTA or EGTA before harvest at 17th week. Lead, Zn, and Cd in plant and soil materials were analyzed, and their potential ecological risk in soils was simultaneously evaluated. These three metals in soils was found to be above 14.4, 3.0, and 29.9 times higher than the national (China) background value, 10.9, 6.19, and 96.7 times higher than the local (Guangdong) background value, and 1.25, 1.20, and 9.67 times higher than the maximum permissible concentration for soils, respectively. An ecological risk analysis of metals using Häkanson's method indicated an extremely high contamination and a significantly high potential ecological risk by these three metals in soils. The both ramie varieties contained respective concentration exceeding the concentration of <10, <80, and <0.27 mg kg⁻¹, respectively, for Pb, Zn, and Cd in normal plants, suggesting they were multimetal tolerant. Tri-2 generally contained higher Pb, Zn, and Cd than Xiangzhu-3. Treatment with EDTA or EGTA applied at 10 mmol kg⁻¹ generally promoted Pb or Cd concentration in both plants while the uptake of Zn was depressed. The ramie variety of Tri-2 and Xiangzhu-3 could extract 0.161 and 0.147 t ha⁻¹ of Cd, respectively, equaling to the 0.17 t Cd per hectare by Cd-hyperaccumulating species Viola baoshanensis. Therefore, two ramie varieties in this study had a higher extracting potential for removal of Cd from contaminated soils.
Afficher plus [+] Moins [-]