Affiner votre recherche
Résultats 4101-4110 de 4,937
A review of bioretention components and nutrient removal under different climates—future directions for tropics Texte intégral
2019
Goh, Hui Weng | Lem, Khe Sin | Azizan, Nor Ariza | Chang, Chun Kiat | Talei, Amin | Leow, Cheng Siang | Zakaria, Nor Azazi
Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
Afficher plus [+] Moins [-]Sulfur, iron, and phosphorus geochemistry in an intertidal mudflat impacted by shellfish aquaculture Texte intégral
2019
Meng, Tao | Zhu, Mao-Xu | Ma, Wei-Wei | Gan, Zai-Xin
Dissolved sulfide, iron (Fe), and phosphorus (P) in a mudflat (Jiaozhou Bay, China) impacted by shellfish aquaculture were measured in situ by the diffusive gradients in thin films (DGT) technique. A combination of porewater and solid-phase chemistry was used to characterize the interplays of Fe and S, and their control on P mobilization. Below the subsurface layer, two times higher fluxes (FDGT) of dissolved Fe²⁺ from porewater to the DGT device than those of dissolved sulfide indicate that dissimilatory iron reduction (DIR) dominates over sulfate reduction (SR). Spatial coupling of dissolved Fe²⁺ and P points to P release driven mainly by reductive dissolution of Fe. Much higher FDGT values of dissolved Fe²⁺ relative to dissolved P imply that oxidative regeneration of Fe oxides at the sediment–water interfaces (SWIs) of the transitional mudflat serves as an effective “iron curtain” of upward diffusing P. In the mudflat sediments of DIR prevalence, the accumulation of total reduced inorganic sulfur (TRIS) is dampened, which can largely ascribed to enhanced oxidative loss of sulfide and/or limited availability of degradable organic carbon in the dynamic regimes. Low dissolved sulfide concentrations in the sediments leave the majority of reactive Fe unsulfidized and thus abundantly available to buffer newly produced sulfide.
Afficher plus [+] Moins [-]Adsorption of phenanthrene and 1-naphthol to graphene oxide and L-ascorbic-acid-reduced graphene oxide: effects of pH and surfactants Texte intégral
2019
Wang, Fang | Jia, Zhixuan | Su, Wenting | Shang, Yuntao | Wang, Zhong-Liang
In this study, reduced graphene oxide (RGO) was synthesized by L-ascorbic acid reduction, which was a relatively mild and environmental friendly reduction method, and the adsorption of organic contaminants was compared to graphene oxide (GO) to probe the potential adsorption mechanisms. The morphology properties of GO and RGO were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared transmission (FTIR), Raman spectrometer, transmission electron microscope (TEM), and scanning electron microscopy (SEM). The adsorption affinities of GO and RGO for phenanthrene and 1-naphthol were studied in batch experiments. The effects of pH and surfactants were also assessed. The results demonstrated that RGO reduced by L-ascorbic acid show significantly greater adsorption affinity for both phenanthrene and 1-naphthol than GO, and even greater than most of RGOs that reduced by the strong reductive reagents. This was mainly attributed to the hydrophobic interaction, π–π interaction, and H-bonding between graphene sheets and organic contaminants. Both GO and RGO showed stronger adsorption to phenanthrene than to 1-naphthol. The adsorption of 1-naphthol increased with decreasing pH and reached a maximum around pH = 7.34. The surfactants, sodium dodecyl benzene sulfaonate (SDBS) and cetyltrimethyl ammonium bromide (CTAB), had negligible influence on adsorption to GO. Note that CTAB significantly inhibited the adsorption of phenanthrene/1-naphthol on RGO, which could be attributed to the pore blockage effect. In addition, RGO could be regenerated and reused with high recyclability over five cycles. The present study suggests that RGO obtained via L-ascorbic acid reduction can be deemed as a promising material for organic contaminated wastewater treatment.
Afficher plus [+] Moins [-]Possible prophylactic effect of omega-3 fatty acids on cadmium-induced neurotoxicity in rats’ brains Texte intégral
2019
Alnahdi, Hanan S. | Sharaf, Iman A.
Cadmium (Cd) has long been noted to induce neurodegenerative disorders. Therefore, this study aimed to assess the toxicological impact of Cd on rat brains and evaluate the possible ameliorative impact of omega-3 fatty acids as a protective agent of nervous system. Rats were divided into four groups: group I supplemented orally with saline; group II intoxicated with CdCl₂ (5 mg/kg b.w. orally), and groups III and VI supplemented with omega-3 (100 mg/kg b.w. orally) simultaneously or before CdCl₂ administration, respectively. Cd intoxication induced biochemical and histopathological disturbances in treated rats. Omega-3 fatty acid considerably improved the Cd-associated biochemical changes, reduced the elevation of lipid peroxidation, and normalized the Cd impact on the levels of superoxide dismutase, catalase, glutathione-S-transferases, 8-hydroxydeoxyguanosine, heatshock protein70, nuclear factor-κB, and interferon-γ as well as of neuronal enzymes such as acetylecholinesterase and monoamine oxidase within the brains of treated rats. Additionally, histological findings supported the results that Cd treatment-induced neurodegenerative changes and that polyunsaturated fatty acids act as antioxidants and neuroprotective agents against Cd toxicity. Co-treatment with omega-3 fatty acid was more beneficial than pretreatment. Thus, omega-3 fatty acid should be included in diet to prevent or suppress neurodegenerative disorders caused by continuous exposure to Cd.
Afficher plus [+] Moins [-]Efficacy of different citrus essential oils to inhibit the growth and B1 aflatoxin biosynthesis of Aspergillus flavus Texte intégral
2019
Restuccia, Cristina | Oliveri Conti, Gea | Zuccarello, Pietro | Parafati, Lucia | Cristaldi, Antonio | Ferrante, Margherita
Food contamination by aflatoxin B1 (AFB1), produced by mycotoxigenic strains of Aspergillus spp., causes severe medical and economic implications. Essential oils (EOs) are mixtures of eco-friendly natural volatile substances. Their ability to inhibit fungal growth has been investigated, while no data are available about their efficacy in inhibition of AFB1 biosynthesis. This study investigates the efficacy of five different citrus EOs to inhibit the growth and AFB1 synthesis of A. flavus through in vitro tests for a future application in food matrices. AFB1 detection was carried out by LC-ESI-TQD analytical approach. Lemon (Citrus limon (L.) Burm. f.), bergamot (Citrus bergamia Risso), and bitter orange (Citrus aurantium L.) EOs were the most effective causing a 97.88%, 97.04%, and 96.43% reduction in mycelial growth, respectively. Sweet orange and mandarin EOs showed the lowest percentage of mycelial growth reduction. Citrus EOs showed different capacity of AFB1 inhibition (lemon > bitter orange > bergamot > sweet orange > mandarin). Our results showed a dose-dependent antifungal activity of lemon, bitter orange, and bergamot EOs which at 2% (v/v) inhibited both mycelium growth and AFB1 genesis of A. flavus. Our results show that EOs’ use can be a pivotal key to recovery and reuse of citrus fruit wastes and to be used as eco-friendly fungicides for improvement of food safety. The use of EOs obtained at low cost from the residues of citric industry presents an interesting option for improving the profitability of the agriculture.
Afficher plus [+] Moins [-]Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats Texte intégral
2019
Turkmen, Ruhi | Birdane, Yavuz Osman | Demirel, Hasan Huseyin | Yavuz, Hidayet | Kabu, Mustafa | Ince, Sinan
It is claimed that oxidative stress has a prominent role in the mechanism of toxic effects formed by glyphosate-based herbicide (GBH) in living systems. A strong thiol compound, N-acetylcysteine (NAC), has antioxidative and cytoprotective properties. The objective in this subchronic toxicity study was to identify the prophylactic effect of NAC over histopathological changes and oxidative stress induced by GBH in blood, renal, liver, cardiac, and brain tissues. A sum of 28 male Wistar rats were divided into four equal groups, each containing 7 rats. During the study, group I (control group) was supplied with normal rodent bait and tap water ad libitum. The applied agents were 160 mg/kg NAC to group II, 375 mg/kg as equivalent to 1/10 of lethal dose 50% (LD50) of GBH to group III, and 160 mg/kg of NAC and 375 mg/kg of GBH together once per day as oral gavage to group IV for 8 weeks. While GBH decreased the levels of GSH in blood, liver, kidney, and brain tissues, it considerably increased malondialdehyde levels. On the contrary, these parameters happened to improve in the group supplied with NAC. Besides, it was seen that NAC was observed to improve the histopathologic changes in rat tissues induced by GBH. It was concluded that NAC protects oxidative stress and tissue damage induced by GBH in blood and tissue and this prophylactic effect could be attributed to its antioxidant and free radical sweeper character.
Afficher plus [+] Moins [-]Efficient adsorption of Cd2+ from aqueous solution using metakaolin geopolymers Texte intégral
2019
Lan, Tian | Li, Pinfang | Rehman, Fazal Ur | Li, Xiangling | Yang, Wei | Guo, Shiwen
In this study, geopolymers were prepared using metakaolin (MK) raw material under different alkali activator moduli (SiO₂/Na₂O = 0.8, 1.2, 1.6, 2.0 M ratio) in order to analyze their capacity and mechanism for adsorbing cadmium (Cd²⁺) from solution. Instrumental analyses including X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy(XPS), Fourier transform infrared (FTIR), and Brunauer-Emmett-Teller (BET) were performed to examine the mineralogical features of the MK and geopolymers before and after Cd²⁺ adsorption. The effect of initial pH, temperature, contact time, and initial concentration on Cd adsorption performance was studied to obtain the equilibrium isotherm. Kinetic data of the geopolymers fitted the pseudo-second-order kinetic model well. Moreover, the adsorption equilibrium data of Cd²⁺ adsorbed by the geopolymers fitted the Langmuir model better than the Freundlich model. The result shows that chemisorption dominates Cd²⁺ adsorption by geopolymers and that the adsorption capacity differs when prepared using different alkali-activated modulus agents. The geopolymer prepared using an alkali activator modulus of 0.8 M (molar ratio) exhibited the best Cd²⁺ adsorption performance with a maximum adsorption capacity of 70.3 mg g⁻¹. The removal rate of Cd²⁺ by geopolymer still remained above 85% after five round of recycling.
Afficher plus [+] Moins [-]Monitoring metal pollution on coastal lagoons using Cerastoderma edule—a report from a moderately impacted system in Western Portugal (Óbidos Lagoon) Texte intégral
2019
Veiga, Kelly | Pedro, Carmen A. | Ferreira, Susana M. F. | Gonçalves, Sílvia C.
Monitoring metal pollution on coastal lagoons using Cerastoderma edule—a report from a moderately impacted system in Western Portugal (Óbidos Lagoon) Texte intégral
2019
Veiga, Kelly | Pedro, Carmen A. | Ferreira, Susana M. F. | Gonçalves, Sílvia C.
The main goal of this monitoring program was to evaluate the contamination in the intertidal environment of Óbidos Lagoon by the metals Cd, Pb, and Ni on water, sediments, and on biological samples, using the bivalve Cerastoderma edule (common name: cockle) as a biomonitor. Since C. edule is an edible mollusc, the risk of their consumption by humans from this lagoon was also evaluated. The study was performed in a restricted area of the lagoon—the ML station—where human activities, such as shellfish harvesting, intersect with the natural processes occurring in this system. The results obtained revealed that the water samples were polluted with Cd and Pb with concentrations (0.00025 mg l⁻¹ and 0.0072 mg l⁻¹) above the maximum legislated on the Directive 2008/105/EC, while for Ni, this occurred only on one of the seasons sampled (summer 2010: 0.029 mg l⁻¹). The sediments were not contaminated with Cd and Ni, and the contamination detected for the metal Pb, allowed the classification of this station as an unpolluted site ([Pbmin] = 7.477 mg.kg⁻¹ and [Pbmax] = 19.875 mg.kg⁻¹). On biological samples, comparing the results of metal contaminations with the values of the maximum levels fixed by European Commission Regulation (EC) No 1881/2006 and USFDA, all the results were below the legal value. Therefore, during the period of study, the consumption of this bivalve by humans was safe. Also, BAF and CF calculations suggest that C. edule can be used as a biomonitor to determine the source of the contaminations. This study supported the use of C. edule as a biomonitor to assess the contamination by the metals Pb and Ni at the Óbidos Lagoon and allowed to predict the potential transfer of metals to higher trophic levels with potential impacts on the natural and human communities.
Afficher plus [+] Moins [-]Monitoring metal pollution on coastal lagoons using Cerastoderma edule: a report from a moderately impacted system in Western Portugal: Óbidos Lagoon Texte intégral
2019
Veiga, Kelly | Pedro, Carmen A. | Ferreira, Susana M. F. | Gonçalves, Sílvia C.
The main goal of this monitoring program was to evaluate the contamination in the intertidal environment of Óbidos Lagoon by the metals Cd, Pb, and Ni on water, sediments, and on biological samples, using the bivalve Cerastoderma edule (common name: cockle) as a biomonitor. Since C. edule is an edible mollusc, the risk of their consumption by humans from this lagoon was also evaluated. The study was performed in a restricted area of the lagoon—the MLstation—where human activities, such as shellfish harvesting, intersect with the natural processes occurring in this system. The results obtained revealed that the water samples were polluted with Cd and Pb with concentrations (0.00025 mg l−1 and 0.0072 mg l−1) above the maximum legislated on the Directive 2008/105/EC, while for Ni, this occurred only on one of the seasons sampled (summer 2010: 0.029 mg l−1). The sediments were not contaminated with Cd and Ni, and the contamination detected for the metal Pb, allowed the classification of this station as an unpolluted site ([Pbmin] = 7.477 mg.kg−1 and [Pbmax] = 19.875mg.kg−1). On biological samples, comparing the results of metal contaminations with the values of the maximum levels fixed by European Commission Regulation (EC) No 1881/2006 and USFDA, all the results were below the legal value. Therefore, during the period of study, the consumption of this bivalve by humans was safe. Also, BAF and CF calculations suggest that C. edule can be used as a biomonitor to determine the source of the contaminations. This study supported the use of C. edule as a biomonitor to assess the contamination by the metals Pb and Ni at the Óbidos Lagoon and allowed to predict the potential transfer of metals to higher trophic levels with potential impacts on the natural and human communities. | info:eu-repo/semantics/publishedVersion
Afficher plus [+] Moins [-]Marine litter in stomach content of small pelagic fishes from the Adriatic Sea: sardines (Sardina pilchardus) and anchovies (Engraulis encrasicolus) Texte intégral
2019
Renzi, Monia | Specchiulli, Antonietta | Blašković, Andrea | Manzo, Cristina | Mancinelli, Giorgio | Cilenti, Lucrezia
Marine litter impacts oceans and affects marine organisms, representing a potential threat for natural stocks of pelagic fish species located at the first levels of the marine food webs. In 2013–2014, on a seasonal basis, marine litter and microplastics in stomach contents from Sardinia pilchardus and Engraulis encrasicolus were evaluated. Selected species are plankitivores of great ecological and commercial importance in the Adriatic Sea. Collected data were correlated to possible factors able to affect ingested levels as well as species, season of sampling, biometry and sex of animals. Almost all tested samples (80 organisms for each species) contained marine litter (over 90% of samples from both species) and also microplastics; while any meso- or macroplastics were recorded. On average, recorded items were as follows: 4.63 (S. plichardus) and 1.25 (E. encrasicolus) per individual. Sardines evidenced a higher number of microplastics characterised by a smaller size than those recorded in anchovies. For sardines, sex, Gastro Somatic Index and sampling season showed negligible effects on the number of ingested litter; conversely, anchovies showed differences related with both sex of animals and dominant colour of ingested materials with prevalence for black and blue colours.
Afficher plus [+] Moins [-]Determination of Alternaria toxins in drinking water by ultra-performance liquid chromatography tandem mass spectrometry Texte intégral
2019
Zhang, Yaoting | Li, Hui | Zhang, Jing | Shao, Bing
A sensitive and reliable analytical method has been developed and validated for the determination of five Alternaria toxins, including tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tentoxin (TEN), in drinking water using a one-step enrichment and clean-up strategy followed by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Drinking water samples were preprocessed using excess sodium sulfite to remove residual chlorine, and the pH was adjusted by formic acid. Analytes were concentrated and purified from the water samples using hydrophilic-lipophilic balanced (HLB) solid-phase extraction (SPE) cartridges. Chromatographic separation was performed on an Acquity HSS C₁₈ column using 0.1 mM ammonium carbonate and methanol as the mobile phase. The average recoveries at three spiked levels (0.1, 0.5, and 1 ng/L for TeA, AOH, and ALT; 0.01, 0.05, and 0.1 ng/L for TEN and AME) were 76.1–106.5%, with an intra-day precision less than 15.5% and inter-day precision of 11.8–16.5%. The limits of detection (LODs) were 0.05 ng/L for TeA, AOH, and ALT and 0.005 ng/L for TEN and AME. The limits of quantification (LOQs) were 0.1 ng/L for TeA, AOH, and ALT and 0.01 ng/L for TEN and AME. The developed method was applied to monitor 289 drinking water samples collected in Beijing from 2015 to 2017, and TeA and TEN were found in 28 samples, with concentrations ranging from 0.16 to 2.7 ng/L and 0.21 to 2.2 ng/L, respectively.
Afficher plus [+] Moins [-]