Affiner votre recherche
Résultats 761-770 de 4,896
Bacterial shifts during in-situ mineralization bio-treatment to non-ferrous metal(loid) tailings
2019
Liu, Jian-li | Yao, Jun | Duran, Robert | Mihucz, Victor G. | Hudson-Edwards, K. A. (Karen A.)
Nonferrous mine tailings have caused serious problems of co-contamination with metal(loid)s. It is still a global challenge to cost-effectively manage and mitigate the effect of the mining wastes. We conducted an in-situ bio-treatment of non-ferrous metal(loid) tailings using a microbial consortium of sulfate reducing bacteria (SRB). During the bio-treatment, the transformation of metal(loid)s (such as Cu, Fe, Mn, Pb, Sb, and Zn) into oxidizable and residual fractions in the subsurface tended to be higher than that observed in the surface. As well the mineral compositions changed becoming more complex, indicating that the sulfur reducing process of bio-treatment shaped the bio-transformation of metal(loid)s. The added SRB genera, especially Desulfotomaculum genus, colonized the tailings suggesting the coalescence of SRB consortia with indigenous communities of tailings. Such observation provides new insights for understanding the functional microbial community coalescence applied to bio-treatment. PICRUSt analysis revealed presence of genes involved in sulfate reduction, both assimilatory and dissimilatory. The potential for the utilization of both inorganic and organic sulfur compounds as S source, as well as the presence of sulfite oxidation genes indicated that SRB play an important role in the transformation of metal(loid)s. We advocate that the management of microorganisms involved in S-cycle is of paramount importance for the in situ bio-treatment of tailings, which provide new insights for the implementation of bio-treatments for mitigating the effect of tailings.
Afficher plus [+] Moins [-]Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction
2019
Xu, Xiaowei | Wang, Peng | Zhang, Jun | Chen, Chuan | Wang, Ziping | Kopittke, Peter M. | Kretzschmar, Ruben | Zhao, Fang-Jie
Arsenic (As) tends to mobilize in flooded paddy soil due to the reductive dissolution of the iron (oxyhydr)oxides to which As sorbs, resulting in elevated As accumulation in rice that poses a potential risk to the food safety and human health. Microbial sulfate reduction is an important biogeochemical process in paddy soils, but its impact on As mobilization remains poorly understood. In this study, we incubated eight As-contaminated paddy soils under flooded conditions to investigate the effect of sulfate addition on As mobility. Porewater Fe and As concentrations and As species were determined. Among the eight soils, an addition of 50 mg S kg⁻¹ as sodium sulfate decreased porewater arsenite only in two soils, which also showed a high mobilization of Fe²⁺. Further experiments showed that the addition of sulfate to these two soils stimulated microbial sulfate reduction but decreased porewater concentrations of both arsenite and Fe²⁺. Additionally, the supply of sulfate increased the fractions of As associated with acid volatile sulfides in the solid phase and decreased As uptake by rice in pot experiments under similar conditions. The effect of sulfate addition on porewater As was diminished by the addition of molybdate, an inhibitor of sulfate reducing bacteria. These results suggest the formation of secondary FeS minerals which co-precipitate or sorb arsenite as a likely mechanism of As immobilization, which was also supported by thermodynamic modeling of the pore water. Thus, sulfate additions can immobilize As and reduce its availability to rice plants in paddy soils containing a high potential for microbial Fe reduction, providing an efficient way to mitigate the As transfer to the food chain.
Afficher plus [+] Moins [-]Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans
2019
How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng | Li, Shang-Wei | Liao, Vivian Hsiu-Chuan
Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.
Afficher plus [+] Moins [-]Ozone exposure- and flux-yield response relationships for maize
2019
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Pleijel, Håkan | Calatayud, Vicent
A stomatal ozone (O₃) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R² = 0.63). Based on the comparison of R² values of the response functions, POD₆ (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m⁻² s⁻¹) and AOT40 (accumulated hourly O₃ concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD₆ and AOT40 for 5% reduction in maize yield were 1.17 mmol m⁻² PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O₃ metric used, AOT40 or POD₆. The newly proposed response functions are relevant for O₃ risk assessment for this crop in Asia.
Afficher plus [+] Moins [-]Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors
2019
Sayahi, T. | Butterfield, A. | Kelly, K.E.
The low-cost and compact size of light-scattering-based particulate matter (PM) sensors provide an opportunity for improved spatiotemporally resolved PM measurements. However, these inexpensive sensors have limitations and need to be characterized under realistic conditions. This study evaluated two Plantower PMS (particulate matter sensor) 1003s and two PMS 5003s outdoors in Salt Lake City, Utah over 320 days (1/2016–2/2016 and 12/2016–10/2017) through multiple seasons and a variety of elevated PM2.5 events including wintertime cold-air pools (CAPs), fireworks, and wildfires. The PMS 1003/5003 sensors generally tracked PM2.5 concentrations compared to co-located reference air monitors (one tapered element oscillating microbalance, TEOM, and one gravimetric federal reference method, FRM). The different PMS sensor models and sets of the same sensor model exhibited some intra-sensor variability. During winter 2017, the two PMS 1003s consistently overestimated PM2.5 by a factor of 1.89 (TEOM PM2.5<40 μg/m3). However, compared to the TEOM, one PMS 5003 overestimated PM2.5 concentrations by a factor of 1.47 while the other roughly agreed with the TEOM. The PMS sensor response also differed by season. In two consecutive winters, the PMS PM2.5 measurements correlated with the hourly TEOM measurements (R2 > 0.87) and 24-h FRM measurements (R2 > 0.88) while in spring (March–June) and wildfire season (June–October) 2017, the correlations were poorer (R2 of 0.18–0.32 and 0.48–0.72, respectively). The PMS 1003s maintained high intra-sensor agreement after one year of deployment during the winter seasons, however, one PMS 1003 sensor exhibited a significant drift beginning in March 2017 and continued to deteriorate through the end of the study. Overall, this study demonstrated good correlations between the PMS sensors and reference monitors in the winter season, seasonal differences in sensor performance, some intra-sensor variability, and drift in one sensor. These types of factors should be considered when using measurements from a network of low-cost PM sensors.
Afficher plus [+] Moins [-]Nitrate supply and sulfate-reducing suppression facilitate the removal of pentachlorophenol in a flooded mangrove soil
2019
Cheng, Jie | Xue, Lili | Zhu, Min | Feng, Jiayin | Shen-Tu, Jue | Xu, Jianming | Brookes, Philip C. | Tang, Caixian | He, Yan
An anaerobic incubation was launched with varying nitrate (1, 5, 10 and 20 mM exogenous NaNO₃) and molybdate (20 mM Na₂MoO₄, a sulfate-reducing inhibitor) additions to investigate the characteristics of PCP dechlorination, as well as the reduction of natural co-occurring electron acceptors, including NO₃⁻, Fe(III) and SO₄²⁻, and the responses of microbial community structures under a unique reductive mangrove soil. Regardless of exogenous addition, nitrate was rapidly eliminated in the first 12 days. The reduction process of Fe(III) was inhibited, while that of SO₄²⁻ reduction depended on addition concentration as compared to the control. PCP was mainly degraded from orth-position, forming the only intermediate 2,3,4,5-TeCP by anaerobic microbes, with the highest PCP removal rate of average 21.9% achieved in 1 and 5 mM NaNO₃ as well as 20 mM Na₂MoO₄ treatments and the lowest of 7.5% in 20 mM NaNO₃ treatment. The effects of nitrate on PCP dechlorination depended on addition concentration, while molybdate promoted PCP attenuation significantly. Analyses of the Illumina sequencing data and the relative abundance of dominant microorganisms indicated that the core functional groups regulated PCP removal at genera level likely included Bacillus, Pesudomonas, Dethiobacter, Desulfoporosinus and Desulfovbrio in the nitrate treatments; while that was likely Sedimentibacter and Geosporobacter_Thermotalea in the molybdate treatment. Nitrate supplement but not over supplement, or addition of molybdate are suggested as alternative strategies for better remediation in the nitrate-deficient and sulfur-accumulated soil ecosystem contaminated by PCP, through regulating the growth of core functional groups and thereby coordinating the interaction between dechlorination and its coupled soil redox processes due to shifts of more available electrons to dechlorination. Our results broadened the knowledge regarding microbial PCP degradation and their interactions with natural soil redox processes under anaerobic soil ecosystems.
Afficher plus [+] Moins [-]Nitrogen variations during the ice-on season in the eutrophic lakes
2019
Yang, Tingting | Hei, Pengfei | Song, Jindong | Zhang, Jing | Zhu, Zhongfan | Zhang, Yingyuan | Yang, Jing | Liu, Chunlan | Jin, Jun | Quan, Jin
Nitrogen accumulation in sediments, and the subsequent migration and transformations between sediment and the overlying water, plays an important role in the lake nitrogen cycle. However, knowledge of these processes are largely confined to ice-free seasons. Recent research under ice has mainly focused on the water eco-environmental effects during winter. Sediment N accumulation during the ice-on season and its associated eco-environmental impacts have never been systematically investigated. To address these knowledge gaps, we chose Wuliangsu Lake in China as a case study site, taking advantage of the spatial disparity between the 13 semi-separated sub-lakes. Based on samples of 35 sampling sites collected before, in the middle, and at the end of ice-on season separately, we performed a quantitative analysis of under-ice lake N accumulation and water-sediment N exchange by analyzing N fraction variations. Hierarchical Cluster Analysis and Relevance Analysis were used to help elucidate the main causes and implications of under-ice N variation. Our results clearly show that existing studies have underestimated the impact of under-ice N accumulation on the lake ecology throughout year: 1) Sediment N accumulated 2–3 times more than that before winter; 2) residual nitrogen (Res-N) contributed to the majority of the accumulated sediment N and was mainly induced by the debris of macrophytes; 3) total available nitrogen (TAN) was the most easily exchanged fractions between sediment and water, and it mainly affected the water environment during winter; 4) the Res-N accumulation during the ice-on season may have a strong impact on the eco-environment in the subsequent seasons. Our research is valuable for understanding the mechanism of internal nutrient cycle and controlling the internal nitrogen pollution, especially in shallow seasonally-frozen lakes that have long suffered from macrophyte-phytoplankton co-dominated eutrophication.
Afficher plus [+] Moins [-]Characterization of colloid-size copper-based pesticide and its potential ecological implications
2019
Tegenaw, Ayenachew | Sorial, George A. | Sahle-Demessie, Endalkachew | Han, Changseok
The intensive use of Cu-based pesticides in agriculture could have an unintended impact on the ecosystems and human health via different exposure pathways. This paper presents the results of experiments involving colloidal stability, aggregation, and dissolution of Cu₂O commercial pesticide under various environmental conditions in view of ecological implications. The investigated pesticide contains ∼750 g kg⁻¹ Cu (75% weight of product), Cu₂O particles with sizes < 1 μm, and nominal size fraction of Cu₂O nanoparticles. The co-presence of Ca²⁺ (20 mM) and humic acid (HA, 15 mg L⁻¹) significantly modulates (p < 0.001) the colloidal stability and mobility of particles. The dissolution of Cu at pH 5.5 was about 85%, 90%, and 75% weight more than the dissolution of Cu at pH 7.0, pH 8.5, and pH 7.0 and pH 8.5 combined, respectively in all dispersions. However, increasing HA content from 0 to 15 mg L⁻¹ reduced the dissolution of Cu by 56%, 50%, and 40% weight at pH 5.5, 7.0, and 8.5, respectively. Thus, pH below 7.0 is a critical factor to control the dissolution and bioavailability of Cu that may pose ecotoxicity and environmental pollution, whereas pH above 7.0 and the presence of HA attenuate the pH effect. These findings provide insight into how the potential mobility and bioavailability of Cu is modulated by the water chemistry under various environmental scenarios and media.
Afficher plus [+] Moins [-]Identifying regional soil as the potential source of PM2.5 particulate matter on air filters collected in Imperial Valley, California – A Raman micro-spectroscopy study
2019
Ghosal, Sutapa | Wall, Stephen
This work explores the use of Raman micro-spectroscopy to determine sources of airborne particulate matter collected on PM₂.₅ air filters in Imperial Valley, California. The goal is to examine if nearby soil is a potential source of particles sampled on air filters deployed in an urbanized desert area during events of unusually high PM₂.₅ excursions. Particle specific composition information can be an indicator of potential origin. This can provide insights into the source of unexpectedly high proportion of large particles sampled on PM₂.₅ filters in the vicinity of Imperial Valley. The measured spectral correspondence between the filter and soil particles, in the size range of 2.5–10 μm, is consistent with windblown dust being a likely source of the larger (>2.5 μm) particles collected on the PM₂.₅ filters. Additionally, these particles were identified as components of commonly occurring crustal minerals in the vicinity of the sampling site, such as iron oxides, hydroxides, sulfides, titanium dioxides and aluminosilicates. A substantial portion of the analyzed filter particles displayed a strong broadband fluorescence signal, which is consistent with the presence of organic matter and has been recognized as a marker for soil related origin of the filter particles. Elemental carbon (soot) was found to be prevalent among the particles as well, suggesting the existence of combustion related sources. Comparison between a heavily loaded filter sample and a filter with a more typical, lower loading did not show any obvious difference in chemical compositions. In both cases the particles appeared to be of crustal origin with the prevalence of elemental carbon. The primary difference between these two filter samples appear to be their particle size distribution - the heavily loaded filter sample contained greater proportion of large particles (>2.5 μm), and was more consistent with spectral signature of soils analyzed from the region.
Afficher plus [+] Moins [-]Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer
2019
Liu, Yin-E | Luo, Xiao-Jun | Zapata Corella, Pablo | Zeng, Yan-Hong | Mai, Bi-Xian
Water, sediment, and wild aquatic species were collected from an electronic waste (e-waste) polluted pond in South China. This study aimed to investigate the bioaccumulation, tissue distribution, and trophic transfer of organophosphorus flame retardants (PFRs) in these aquatic organisms. The concentrations of PFRs detected in the analyzed organisms were between 1.7 and 47 ng/g wet weight (ww). Oriental river prawn and snakehead exhibited the highest and lowest levels, respectively. Tri-n-butyl phosphate (TnBP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP) and triphenyl phosphate (TPhP) were dominant contaminants, accounting for approximately 86% of the total sum. The mean values of bioaccumulation factors (BCFs) and logarithmic biota-sediment accumulation factors (log BSAFs) for individual PFRs varied from 6.6 to 1109 and from −2.0 to 0.41, respectively. Both log BCFs and log BSAFs of PFRs were significantly and positively correlated with their octanol-water partitioning coefficient (log KOW). The concentrations of PFRs in tissues of large mud carp and snakehead were significantly and positively correlated with the lipid content (each p < 0.05) and the liver, kidney, and gill exhibited high PFR levels. When the concentration was expressed on a lipid basis, liver exhibited the lowest level, indicating the probable effects of metabolism. Significantly positive correlation was also found between lipid content and total PFR concentration in muscle of all aquatic organisms, given the strong correlation between lipid content and the concentration of TnBP. Trophic magnification factors (TMF) of TnBP and TPhP were lower than 1 (0.57 and 0.62), indicating that these PFRs undergo trophic dilution in this aquatic food web.
Afficher plus [+] Moins [-]