Affiner votre recherche
Résultats 951-960 de 1,546
Uptake Kinetics of As, Hg, Sb, and Se in the Aquatic Moss Fontinalis antipyretica Hedw Texte intégral
2012
Díaz, Santiago | Villares, Rubén | Carballeira, Alejo
Laboratory experiments were carried out to study the uptake kinetics of selected metals and metalloids in the aquatic moss Fontinalis antipyretica. For this purpose, moss specimens from a clean site were exposed to concentrations of As, Hg, Sb, and Se ranging from 0.1 to 10,000 μg l−1, for incubation times of between 1 and 22 days, and the tissue concentrations of the metals in the moss specimens were then measured. Uptake kinetics followed different patterns in relation to exposure time, although the most common was Michaelis–Menten kinetics. On the contrary, the contamination factors followed very similar patterns in relation to the exposure concentrations in all cases, with a good fit to logarithmic equations. The bioconcentration factors tended to decrease as exposure concentration increased. The bioconcentration factors for Hg were extremely high, even at the lowest concentration in water and for the shortest incubation time, which implies that F. antipyretica has a high capacity to magnify Hg levels in water, which is an important characteristic in a good biomonitor. According to the time to reach equilibrium, the minimum exposure time recommended for use in active biomonitoring by means of transplants is very variable, although high levels of the elements, except Sb, were found in the moss tissues within a few days. We do not recommend the use of this moss species to biomonitor low concentrations of Sb in water. The differences in maximum contamination factors and lowest bioconcentration factors suggest that As and Se were the most toxic of the elements under study.
Afficher plus [+] Moins [-]Environmental System Analysis for River Pollution Control Texte intégral
2012
Diwakar, Jasmine | Thakur, Jay Krishna
This paper presents a new tool, developed with the aim of assessing the environmental impact from industrial effluents and sewage systems in Hanumante River and to recommend the finest procedures to control water pollution so as to improve the water quality of Hanumante River using environmental system analysis. Hanumante River is heavily polluted due to inefficient management resulting in water-associated problems. The time horizon for this study is from 2000 to 2030, yearly, and the spatial boundary is considered to be Hanumante River, Bhaktapur, Nepal. The stakeholder, function, and scenario analyses are employed as three tools for study. The participation of main stakeholders aids in resolving their various conflicting interests in Hanumante River, thus creating a common understanding about the crisis under study. A complete functional analysis illustrates various functions fulfilled by the river and their associated services. Based on the interests of the stakeholders and their priorities, two alternatives resulting in four scenarios are identified and ranked against four selected criteria. A combination of improved industrial technology and efficient municipal waste management gives the best solution to the pollution problem in Hanumante River. Different alternative themes have corresponding effects on the selected criteria. The choice is in the hands of the decision makers of Bhaktapur City. The outcome of this paper will ultimately help decision and policy makers to analyze the environmental impact of river systems and find efficient and better-quality decision making for water resource management incorporating the knowledge and experiences of various stakeholders.
Afficher plus [+] Moins [-]Reduction of Nitrate and Ammonium Adsorption Using Microscale Iron Particles and Zeolitite Texte intégral
2012
Comba, Silvia | Martin, Maria | Marchisio, Daniele | Sethi, Rajandrea | Barberis, Elisabetta
Nitrate contamination of groundwater represents a threat to human health. Many researchers have studied zerovalent iron as a mean to remediate nitrate contamination. However, the application of such method is limited by ammonium production. This work investigates the use of microscale iron particles in association with zeolitite, a natural material containing zeolite, to remove nitrate and ammonium from groundwater. The association of the two materials is shown to lower the nitrate concentration in both deionized water and groundwater under the limit suggested by the European Union and to significantly reduce the ammonium concentration. The method is potentially applicable in water filtration.
Afficher plus [+] Moins [-]Vertical Distribution of Carbonyl Sulfide at Mt. Fuji, Japan Texte intégral
2012
Kato, Hiromi | Igarashi, Yasuhito | Dokiya, Yukiko | Katayama, Yoko
Atmospheric carbonyl sulfide (COS) mixing ratios measured over 24 h during five summer campaigns (2003–2007) in a forest at the foot of Mt. Fuji, Japan (35°21′ N, 138°43′ E; 1,300 m above sea level, a.s.l.) and at the summit (3,776 m a.s.l.) were compared. COS levels were lower at the foot than at the summit during four out of five summer campaigns. The ratios of COS mixing ratios at the foot of Mt. Fuji to those at the summit ranged from 0.7 to 0.9. These results provide evidence of biological consumption of COS in the East Asian atmospheric boundary layer. We also measured the vertical profile of ambient COS below the forest canopy. These data showed a clear gradient of COS mixing ratio: in the lowermost 1 m of the boundary layer, COS mixing ratios decreased markedly downward. Two of the different kinds of vertical distribution of COS presented here support the role of soil as a sink of atmospheric COS described by previous research using dynamic enclosure experiments.
Afficher plus [+] Moins [-]Oxidation of Chlorophenols in Aqueous Solution by Excess Potassium Permanganate Texte intégral
2012
Hossain, S. M Ghausul | McLaughlan, Robert G.
A simple spectrophotometric method was developed to quantify chlorophenol (CP) concentrations after reaction with potassium permanganate and quenching with sodium sulfite. Other quenching agents (peroxide, sodium thiosulfate and hydroxylamine hydrochloride) were found to create absorbance in the spectral range required for CP quantification. Analysis at pH 12 gave greater absorption and sensitivity for the method compared with pH 5.6. The calibration curves of the proposed methods were linear in the concentration ranges 0.0061–0.61 and 0.0078–0.78 mM with detection limit of 0.0006 and 0.0008 mM for dichlorophenols and monochlorophenols, respectively. The oxidation kinetics of five chlorophenols in aqueous solution with excess potassium permanganate were evaluated using the analytical method. The pseudo-first-order reaction rates were found to be relatively rapid 1.42 × 10−3 to 0.024 s−1 and followed the sequence 2-chlorophenol (2-CP) > 2,6-dichlorophenol (2,6-DCP) > 4-chlorophenol (4-CP) > 2,4-dichlorophenol (2, 4-DCP) > 3-chlorophenol (3-CP). The apparent second-order rate constant was calculated from the measured pseudo-first-order rate constant with respect to CP with initial KMnO4 concentration (1.5 mM) and follows the same sequence of pseudo-first-order rate constant. This shows that chlorine atoms in the structure of chlorophenol had a significant influence on the oxidation of chlorophenols by potassium permanganate. Permanganate can be used for the treatment of chlorophenol-contaminated soil and groundwater.
Afficher plus [+] Moins [-]Bioinformatic Analyses of Bacterial Mercury Ion (Hg²+) Transporters Texte intégral
2012
Mok, Timothy | Chen, Jonathan S. | Shlykov, Maksim A. | Saier, Milton H. Jr
Currently, there are five known types of mercury transporters in bacteria: MerC, MerE, MerF, MerH, and MerT. Their general function is to mediate mercuric ion uptake into the cell in preparation for reduction to Hg°. They are present in several bacterial phyla and comprise five distinct families. We have utilized standard statistical bioinformatic tools and the superfamily principle to show that they are related by common descent. After using programs such as Global Alignment Program and SSearch to establish homology, we aligned and analyzed their amino acid sequences to find a single well conserved motif. Although these proteins exhibit 2, 3, or 4 transmembrane helical segments (TMSs), TMSs 1 and 2 are common to all superfamily members. An ancestral sequence was determined, and reliable phylogenetic trees were constructed. The results support the conclusion of homology, establishing that these proteins belong to a single superfamily. This important discovery allows extrapolation of information about structure, function, and mechanism from one protein to all superfamily members to degrees inversely proportional to their phylogenetic distances.
Afficher plus [+] Moins [-]Influence of Soil Granulometry on Pyrene Desorption in Groundwater Using Surfactants Texte intégral
2012
Rodriguez-Escales, Paula | Sayara, Tahseen | Vicent, Teresa | Folch, Albert
The high hydrophobicity of polycyclic aromatic hydrocarbons (PAHs) is the main limiting factor for the remediation of soils and aquifers. Surfactants are amphiphilic substances which encourage the transfer of hydrophobic compounds from the solid to the liquid phase. While the interaction between organic matter and surfactants has been widely studied, there is a lack of knowledge concerning the relationship between surfactant efficiency and the granulometry of soil and/or geologic material. In this paper, three non-ionic surfactants (Tween 80, Gold Crew, and BS-400) were used to study the desorption of pyrene, chosen as a representative PAH, in soils with different grain size proportions (1%, 5%, 10%, and 20% of clay and silt) and no organic matter (<0.1%). The best quantity of surfactant to apply is closely related to the proportion of fine materials. Tween 80 gave better maximum desorption than Gold Crew and BS-400 (89%, 40%, and 36%, respectively). As an important proportion of aquifers show fine material above 1%, the effective critical micellar concentration obtained when applying surfactants to this type of geologic materials has to be higher than 150 mg L−1 for Tween 80, and higher than 65 mg L−1, and 100 mg L−1 for Golf Crew and BS 400, respectively. Furthermore, results indicate that carrying out simple laboratory tests before the use of surfactants on a field scale is necessary to improve the efficiency and minimize the financial and environmental impact of its application.
Afficher plus [+] Moins [-]Immobilization of Zn and Pb in Polluted Soil by In Situ Crystallization Zeolites from Fly Ash Texte intégral
2012
Belviso, Claudia | Cavalcante, Francesco | Ragone, Pietro | Fiore, Saverio
In the last few years, a great deal of research on soil has been carried out in order to develop a low-cost remediation method for reducing the environmental risks due to the pollution caused by heavy metals. In the light of this, the zeolitization achieved in soils mixed with coal fly ash could be a useful answer to reduce the amount and the mobility of metals in polluted areas. In this study, a selected soil treated with coal fly ash and artificially contaminated with Zn or Pb was used to synthesize zeolite at low temperature in laboratory and on a bench-scale experiments. Mineralogical data showed that the synthesis of zeolite X took place readily after the first month, and the amount of the newly formed mineral increased during the entire 1-year-long incubation period. The presence of toxic elements does not interfere with zeolite crystallization, whereas the chemical analysis indicated that a reduction in heavy metal availability takes place in the samples characterized by the presence of zeolite.
Afficher plus [+] Moins [-]Culture-Dependent and Culture-Independent Methods in Evaluation of Emission of Enterobacteriaceae from Sewage to the Air and Surface Water Texte intégral
2012
Korzeniewska, Ewa | Harnisz, Monika
The number of Enterobacteriaceae, with particular attention given to the presence of Escherichia coli and Klebsiella pneumoniae, was determined in hospital effluents and municipal wastewater after various stages of purification. The emission of these microorganisms to the ambient air near wastewater treatment plant (WWTP) facilities and to the river water, which is a receiver of the WWTP effluent, was also studied using fluorescence in situ hybridization (FISH) and cultivation methods. The number of Enterobacteriaceae determined by cultivation and fluorescence methods in different kinds of sewage sample ranged from 0.5 × 10³ to 2.9 × 10⁶ CFU/ml and from 2.2 × 10⁵ to 1.3 × 10⁸ cells/ml, respectively. Their removal rates during treatment processes were close to 99 %, but the number of these bacteria in the WWTP outflow was quite high and ranged from 5.9 × 10³ to 3.5 × 10⁴ CFU/ml and from 1.1 × 10⁵ to 6.1 × 10⁵ cells/ml, respectively. In the river water and the air samples, the number of Enterobacteriaceae was also high and ranged from 4.1 × 10³ to 7.9 × 10³ CFU/ml and from 3 to 458 CFU/m³, respectively. The numbers of these microorganisms obtained from fluorescence and cultivation methods were statistically and significantly correlated; however, the analysis of the studied samples indicated that the FISH method gave values up to 10³-fold times greater than those obtained by the cultivation method. From a sanitary point of view, this means that the number of viable fecal bacteria is systematically underestimated by traditional culture-based methods. Thus, the FISH proves to be a method that could be used to estimate bacterial load, particularly in air samples and less contaminated river water.
Afficher plus [+] Moins [-]Substance Flow Analysis of Mercury Affecting Water Quality in the European Union Texte intégral
2012
Sundseth, Kyrre | Pacyna, Jozef M. | Pacyna, Elisabeth G. | Panasiuk, Damian
Knowledge concerning the main flows of priority substances (PSs) and the production systems and consumption structures in the society causing these flows is a prerequisite for any attempt to predict and understand their environmental fate as well as to efficiently minimize future environmental burdens. In this paper, a simple SFA diagram on mercury, including the main European Union (EU-27) source categories, flows and environmental endpoints which in turn affect the mercury concentrations in the EU-27 waters are illustrated. From trend analysis and future projections, it becomes obvious that emissions of mercury as a trace contaminant in fuels and minerals (primary anthropogenic emission sources) are becoming increasingly important to the environmental concentrations compared to emissions from mercury used intentionally (secondary anthropogenic sources). Additional future control strategies should therefore be targeted industrial sources and safe treatment of mercury-containing wastes, wastewater effluents, as well as residues collected from various combustion processes. It was found that knowledge on flows and emission sources on a large geographical scale is limited due to a lack of information on emission factors from various industrial processes and waste systems, especially for the mercury being discharges to water and land.
Afficher plus [+] Moins [-]