Impact Tech Startups: A Conceptual Framework, Machine-Learning-Based Methodology and Future Research Directions
Benjamin Gidron | Yael Cohen-Israel | Kfir Bar | Dalia Silberstein | Michael Lustig | Daniela Kandel
The Impact Tech Startup (ITS) is a new, rapidly developing type of organizational category. Based on an entrepreneurial approach and technological foundations, ITSs adopt innovative strategies to tackle a variety of social and environmental challenges within a for-profit framework and are usually backed by private investment. This new organizational category is thus far not discussed in the academic literature. The paper first provides a conceptual framework for studying this organizational category, as a combination of aspects of social enterprises and startup businesses. It then proposes a machine learning (ML)-based algorithm to identify ITSs within startup databases. The UN’s Sustainable Development Goals (SDGs) are used as a referential framework for characterizing ITSs, with indicators relating to those 17 goals that qualify a startup for inclusion in the impact category. The paper concludes by discussing future research directions in studying ITSs as a distinct organizational category through the usage of the ML methodology.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute