Hyperspectral Image Classification via Deep Structure Dictionary Learning
2022
Wenzheng Wang | Yuqi Han | Chenwei Deng | Zhen Li
The construction of diverse dictionaries for sparse representation of hyperspectral image (HSI) classification has been a hot topic over the past few years. However, compared with convolutional neural network (CNN) models, dictionary-based models cannot extract deeper spectral information, which will reduce their performance for HSI classification. Moreover, dictionary-based methods have low discriminative capability, which leads to less accurate classification. To solve the above problems, we propose a deep learning-based structure dictionary for HSI classification in this paper. The core ideas are threefold, as follows: (1) To extract the abundant spectral information, we incorporate deep residual neural networks in dictionary learning and represent input signals in the deep feature domain. (2) To enhance the discriminative ability of the proposed model, we optimize the structure of the dictionary and design sharing constraint in terms of sub-dictionaries. Thus, the general and specific feature of HSI samples can be learned separately. (3) To further enhance classification performance, we design two kinds of loss functions, including coding loss and discriminating loss. The coding loss is used to realize the group sparsity of code coefficients, in which within-class spectral samples can be represented intensively and effectively. The Fisher discriminating loss is used to enforce the sparse representation coefficients with large between-class scatter. Extensive tests performed on hyperspectral dataset with bright prospects prove the developed method to be effective and outperform other existing methods.
Показать больше [+] Меньше [-]Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute