Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network
2017
Dongmei Song | Yaxiong Ding | Xiaofeng Li | Biao Zhang | Mingyu Xu
Oil spill accidents from ship or oil platform cause damage to marine and coastal environment and ecosystems. To monitor such spill events from space, fully polarimetric (Pol-SAR) synthetic aperture radar (SAR) has been greatly used in improving oil spill observation. Aiming to promote ocean oil spill classification accuracy, we developed a new oil spill identification method by combining multiple fully polarimetric SAR features data with an optimized wavelet neural network classifier (WNN). Two sets of RADARSAT-2 fully polarimetric SAR data are applied to test the validity of the developed method. The experimental results show that: (1) the convergence ability of optimized WNN can be enhanced, improving overall classification accuracy of ocean oil spill, in comparison to the classification results based on a common un-optimized WNN classifier: and (2) the joint use of the multiple fully Pol-SAR features as the inputs of the classifier can achieve better classification result than that only with single fully Pol-SAR feature. The developed method can improve classification accuracy by 4.96% and 7.75%, compared with the classification results with un-optimized WNN and only with one single fully polarimetric SAR feature. The classification overall accuracy based on the proposed approach can reach 97.67%. Experimental results have proven that the proposed approach is effective and applicable to classify the ocean oil spill.
Показать больше [+] Меньше [-]Библиографическая информация
Эту запись предоставил Multidisciplinary Digital Publishing Institute