AGRIS — международная информационная система по сельскохозяйственным наукам и технологиям

Effect of some organic fertilizers and chemical catalysts on soil properties Growth and growth of pepper plants and their resistance to mozzarella virus (CMV) in Heated agriculture

2023

Mohammad Ibrahim


Библиографическая информация
Издатель
Tishreen University Faculty of Agriculture Engineering
Другие темы
مخصبات حيوية; كلوروفيل أ; Chlorophyll a and chlorophyll b; حمض الساليسيلك; Plant growth promoting rhizobacteria (pgpr); Fraturia aurantia; مقاومة جهازية; Cucumber mosaic cucumovirus (cmv); كاروتينوئيدات; Total phenols; فيروس موزاييك الخيار; Free salicylic acid; بكتيريا محفزة لنمو النبات pgpr; فينولات كلية; Carotenoid; Activity of peroxidase enzyme; كلوروفيل ب; Systemic risistance; Azotobacter chroococcum; نشاط أنزيم البيروكسيداز
Язык
арабский
Примечание
References 1. ABDUL QADOS, A. M. S. Effects Of Salicylic Acid On Growth, Yield And Chemical Contents Of Pepper (Capsicum Annuum L) Plants Grown Under Salt Stress Conditions. International Journal of Agriculture and Crop Science, Vol 8 (2), 2015, 107-113. 2. ABOU EL-YAZIED, A. Effect of Foliar Application of Salicylic Acid and Chelated Zinc on Growth andProductivity of Sweet Pepper (Capsicum annuum L.) under Autumn Planting.. Research Journal of Agriculture and Biological Sciences, Egypt, 7(6), 2011, 423-433. 3. ABREU M.E,and SERGI MUNNE -BOSCH. Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. Journal of Experimental Botany. 60(4), 2009,1261–1271. 4. AERON, A., KUMAR, S., PANDEY, P., AND MAHESHWARI, D. K. Emerging role of plant growth promoting rhizobacteria in agrobiology. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Crop ecosystems (pp. 1–36). Springer Berlin Heidelberg. 2011, doi:10.1007/978-3-642-18357-7_1. 5. AGLIKA, E. Pathogenesis- related proteins. Research progress in the last 15 years. General and Applied plant Physiology, 2005 , 31(1-2), 105-124. 6. AGRIOS, G.N. Plant pathology, 5thed. Elsevier, 2005, 922p. 7. AHMED, W., M. IMRAN, M.YASEEN, T. HAQ, M. U. JAMSHAID, S. RUKH, R. M. IKRAM, M.ALI, A. ALI, M. MAQBOOL, M.ARIF, AND M. A.KHAN.Role of salicylic acid in regulating ethylene and physiological characteristics for alleviating salinity stress on germination, growth and yield of sweet pepper .PeerJ, 2020, 8:e8475 8. AKGÜL .D.S. and M. MIRIK. Biocontrol of Phytophthora Capsici on Pepper plants by Bacillus megaterium strains. Journal of Plant Pathology. Turkey , 90(1), 2008, 29-34. 9. AL SHAMI R., IMAD I., YASER H. Effect of Three Species of Rhizobacteria (PGPR) in Stimulating Systemic Resistance on Tomato Plants against Cucumber Mosaic Virus (CMV). SSRG International Journal of Agriculture & Environmental Science ( SSRG – IJAES ), 4 (6), 2017.10. AL-ASKAR, A. A., AND RASHAD, Y. M. Arbuscular Mycorrhizal Fungi: A Biocontrol Agent against Common Bean Fusarium Root Rot Disease. Plant pathology journal, 2010, Vol. 9, No.1, 31-38 11. ALKEMA. JOY and SPENCER L. SEAGER. The Chemical Pigments of Plants. Weber State College. Ogden. Utah 8440s .59 (3), 1982. 12. AMIRINEJAD, A. A., M. SAYYARI, F. GHANBARI, S. KORDI. Salicylic acid improves salinity Salicylic acid improves salinity-alkalinity tolerance in pepper (Capsicum annuum L.) Adv. Hort. Sci., 31(3), 2017, 157-163. 13. ANFOKA, GH. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester induces systemic resistance in tomato (Lycopersicon esculentum. Mill cv. Vollendung) to Cucumber mosaic virus. Crop Protection, 19, 2000, 401-405. 14. ANWAR-UL-HAQ., M.; SAFDAR A. A.; MUHAMMAD S., NAZIR J.; SAJID A. Management of Root Knot Nematode Meloidogyne incognita by Plant Growth Promoting Rhizobacteria on Tomato. Pakistan J. Zool. vol. 43(6), 2011, pp. 1027-1031. 15. ARNON, D.I. Plant Physiology. University of California, Berkeley, 1949,p241. 16. ARSHAD, M., & FRANKENBERGER, W. T. Plant growth-regulating substances in the rhizosphere: Microbial production and functions. Advances in Agronomy, 62, 1998, 46–152. 17. AUDENAERT K, PATTERY T, CORNELIS P, HÖFTE M. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant-Microbe Interact MPMI,2002, 15(11), 1147–1156. 18. AZIZ, Z.F.A., M.S. HALIMI., F.R. KUNDAT., M. JIWAN.,and S.K. WONG. Rhizobacterium Bacillus cereus induces root formation of pepper (Piper nigrum L.) stem cuttings. Research in Biotechnology .Malaysia, 6(2), 2015,23-30 19. BAHENA MHR, SALAZAR S, VELلZQUEZ E, LAGUERRE G, PEIX A. Characterization of phosphate solubilizing rhizobacteria associated with pea (Pisum sativum L.) isolated from two agricultural soils. Symbiosis, 2015, 67:33–41 20. BAKKER, PAHM, RAN L,MERCADO-BLANCO J. Rhizobacterial salicylate production provokes headaches. Plant Soil, 2014, 382:1. https://doi.org/10.1007/s11104-014-2102-0. 21. . PRICE, W. C. Isolation and study of some yellow strains of cucumber mosaic. Phytopathology, 1934, 24, 742-761. 22. BEHERA, B., S. GHANTY, F. AHMAD, S. SANTRA, S. BANERJEE. UV-Visible Spectrophotometric Method Development and Validation of Assay of Paracetamol Tablet Formulation. Analytical & Bioanalytical Techniques. J Anal Bioanal Techniques. 2012, 3(6). 23. BEIJERINCK, M. W. Die Bacterian der Papillionaceen knollchen. Bot. Ztg, 1888, No,. 46, 726-735 24. BENSON, S. Microbiological Applications Laboratory Manual in General Microbiology. The McGraw−HillCompanies, 2001. P455. 25. BERGEY"S MANUAL. Bergey‟s Manual of Determinative Bacteriology. Williams and Wilking .Baltimore . Identification flow charts. London. 2004. P8.26. BOCACRD, F. AND BAULCOMBE, D. C. Mutational analysis of cis-acting sequences and gene function in RNA3 of Cucumber mosaic virus. Virology, 1993, 193(2): 563-578. 27. BOLLARD, E.G. AND MATHEWS, R.E.F. The physiology of parasitic diseases. In F.C. steward (Ed) plant physiology 4(b) Acad. Pres, New York, 1966, 599p. 28. BOLWELL GP, BINDSCHEDLER LV, BLEE KA, BUTT VS, DAVIES DR, et al. The apoplastic oxidative burst in response to biotic stress in plants: a three component system. J Exp Bot, 2002, 53: 1367-1376. 29. BOUIZGARNE.,BRAHIM. Bacteria for Plant Growth Promotionand Disease Management. Springer, 2013, 454p 40 illus. hardcover. 30. BRAULT V, UZEST M, MONSION B, JACQUOT E, BLANC S. Aphids as transport devices for plant viruses. Compte Rendus Biol, 2010, 333:524–38. 31. BREMNER. JM AND MULVANEY. CS: Methods of soil analysis part2. Am. Soc. Agron. Madison WI, USA, 1982, 595-624. 32. CANAKCI, S. Effects of salicylic acid on growth, biochemical constituents in pepper (Capsicum annuum L.) seedlings. Pak J Biol Sci, 2011, 15;14(4):300-4 33. CARMICHAEL, J. K. Treatment of herpes zoster and post herpetic neuralgia. Am. Family Physician, 1991, 44:203-210. 34. CHANDRA, K. AND GREEP, S. Potash Mobilizing Bacteria (frateuria aurantia). Regional Director. Regional Centre of Organic Farming, 2006, No. 34. 5th main road, Hebbal, Bangalore 24. P 74. 35. CHATTERJEE. R, S. KONER and S. DATTA.Impact of Microbial Inoculants on the Performance of Bell Pepper (Capsicum annuum L.) Varieties under Foot Hills of Eastern Himalayan Region.Int.J.Curr.Microbiol.App.Sci.India,2016 ,5(9): 131-138. 36. CHATURVEDI R, AND SHAH J. Salicylic acid in plant disease resistance. In Salicylic acid: A plant hormone. Hayat S and Ahmad A, eds., Springer, Dordrecht, The Netherlands, 2007, pp. 335-370. 37. CHET, I., ORDENTLICH, A., SHAPIRA, R., & OPPENHEIM, A. Mechanisms of biocontrol of soil-borne plant pathogens by rhizobacteria. Plant and Soil, 1990, 129, 85–92. 38. CHITTOOR, J.M., J.E. LEACH AND F.F. WHITE. Induction of peroxidase during defense against pathogens. In: Pathogenesis: Related proteins in plants. S.K. Datta, S. Muthukrishnan (eds.). CRC Press, Boca Raton, FL, 1999, 291 pp. 39. CHOUDHARY, D.K. ; A. PRAKASH. AND B.N JOHRI. Induced systemic resistance (ISR) in plants: mechanism of action. Journal of Microbiology, Indian, 2007, 47 (4): 289-297. 40. CISTERNAS-JAMET, JONATHAN., RICARDO SALVATIERRA-MARTÍNEZ., ANTONIOVEGA-GÁLVEZ ., ALEXANDRA STOLL., ELSA URIBE ., MARÍA GABRIELA GOÑI. Biochemical composition as a function of fruit maturity stage of bell pepper (Capsicum annum) inoculated with Bacillus amyloliquefaciens, Scientia Horticulturae, 2020, Volume 263. 41. COSTACHE M. A., CAMPEANU G. AND NEATA G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables, Romanian Biotechnolo. Letters, 2012, 17(5), 7702–7708.42. DAGNOKO .S., NIAMOYE. Y., PAUL .N.S., OLAGORITE. A., AMINATA .D., KADIDIATOU .G., AISSATA. T., SÉRIBA .K AND DAOULÉ D. Overview of pepper (Capsicum spp.) breeding in West Africa. African Journal of Agricultural Research, 2013, Vol. 8(13), pp. 1108-1114. 43. DAMAYANTI., DAMAYANTI, HENDRA PARDEDE, NISA RACHMANIA MUBARIk. Utilization of Root-Colonizing Bacteria to Protect Hot-Pepper Against Tobacco Mosaic Tobamovirus. HAYATI Journal of Biosciences, 2007, p 105-109 Vol. 14, No. 3. 44. DASHTI., N. H., M. S. MONTASSER, N. Y. ALI, R. G. BHARDWAJ AND D. L. SMITH. Nitrogen Biofixing Bacteria Compensate for the Yield Loss Caused by Viral Satellite RNA Associated with Cucumber Mosaic Virus in Tomato. Plant Pathol. J, 2007, 23(2) : 90-96. 45. DASHTI., NARGES H, MAGDY S. MONTASSER, NEDAA Y. A. ALI AND VINEETHA M. CHERIAN. Influence of plant growth promoting rhizobacteria on fruit yield, pomological charateristics and chemical content in cucumber mosaic virus-infected tomato plants. J . Sci, Kuwait, 2014, 41(2)PP. 205-220. 46. DASTAGER S., C. DEEPA.,and A. PANDEY. Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943. Section Cellular and Molecular Biology. India, 2011, Vol 66(5):801 47. DATTA, A., SINGH, R., KUMAR, S., and KUMAR, S. An Effective and Beneficial Plant Growth Promoting Soil Bacterium―Rhizobium‖: A Review. Annals of Plant Sciences, 2015, Vol., 4, No. 1, 933-942. 48. DAVINO, S.; BELLARDI, M.G.; BELLA, M.D.; DAVINO, M. AND BERTACCINI, A. Characterization of a Cucumber mosaic virus isolate infecting Mandevilla sanderi (Hemsl.) Woodson. Phytopathologia Mediterranea, 2005, 44: 220-225. 49. DAWA, K. K. ; H. M. E. ABD EL - NABI and W. M. E. SWELAM. perponse of sweet pepper plants (Vegetative growth and leaf chemical constituents) to organic, Biofertilizers and some foliar application treatments. J. Plant Production, Mansoura Univ. Egypt, 2012, Vol. 3 (9): 2465 – 2478 50. DAY. PR. Methods of soil analysis, part1. Am. Soc. Agron. Madison Wi, QSA, 1965, 546-566. 51. DESHWAL, V. K., SINGH, S. B., KUMAR, P. and CHUBEY, A. Rhizobia Unique Plant Growth Promoting Rhizobacteria: A Review. International Journal of Life Sciences, 2013, Vol. 2, No. 2, 74-86. 52. DESSAUX Y, GRANDCLÉMENT C, FAURE D. Engineering the rhizosphere. Trends Plant Sci, 2016, 21: 266–278 53. DIBY. P .,Y. R. SARMA., V. SRINIVASAN., M. ANANDARAJ. Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under green house cultivation, Annals of Microbiology, 2005, 55 (3) 00-00. 54. DIYANSAH, BOGI., L. Q. AINI., T. HADIASTONO. The effect of PGPR (Plant Growth Promoting Rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis On Leaf Mustard Plant (Brassica juncea L.) Infected by TuMV (Turnip Mosaic Virus).J . Trop. Plant Prot, 2012, 1 (1): 30- 38.55. DORAIS, M.;, A .P. PAPADOPOULOS. AND, A GOSSELIN. Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie, EDP Sciences, 2001, 21(4):367-383. 56. DOWLING D. N., R. SEXTON, A. FENTON T. NAKAZAWA, K. FURUKAWA, D. HAAS, AND S. SILVER, EDS. Iron regulation in plant-associated Pseudomonas fluorescens M114: implications for biological control,” in Molecular Biology of Pseudomonads, , American Society for Microbiology Press, Washington, DC, USA, 1996, pp 502–511. 57. EBRAHIM, SABOKI. K.USHA AND S. BHUPINDER. Pathogenesis Related (PR) Proteins in Plant Defense Mechanism. Science against microbial pathogens: communicating current research and technological advances, 2011, pp12. 58. EL-AFIFI, SOHAIR I., ALI M. EL-BOROLLOSY AND SABRY Y.M. MAHMOUD. Tobacco Callus Culture as a Propagating Medium for Cucumber Mosaic Cucumovirus. International Journal of Virology, 2007, 3: 73-79. 59. EL-BAZ, REHAM, M. Physicochemical, physiological and histopathological studies on cucumber mosaic virus. M.Sc. Thesis. Fac. of Sci. Helwan Univ., Cairo, Egypt, 2004, 192 p. 60. EL-BOROLLOSY, A. M. AND M. M. ORABY. Induced systemic resistance against Cucumber mosaic cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Faculty of Agriculture, Ain Shams University, Annals of Agricultural Science, 2012, 57(2). p 91–97. 61. ELWANA,M.W.M., EL-HAMAHMY, M.A.M. Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Scientia Horticulturae, 2009, Volume 122, Issue 4, Pages 521-526 62. ENYEDI, A.J.; YALPANI, N.; SILVERMAN, P. AND RASKIN, I. Localization, conjugation and function of salicylic acid in tobacco during the hypersensitive reaction to Tobacco Mosaic Virus. Proc. Natl. Acad. Sci. USA, 1992, 89: 2480-2484. 63. FERREIRA, S.A. Cucumber mosaic virus. Knowledge Master (Web database). http:// www.extento.hawaii. edu/Kbase/Crop/Type/cucvir.htm, 1992. 64. FIGUEIREDO MVB, BONIFACIO A, RODRIGUES AC, ARAUJO FF. Plant growth-promoting rhizobacteria: key mechanisms of action. In: Choudhary DK, Varma A (eds) Microbial-mediated induced systemic resistance in plants. Springer Science + Business Media, Singapore, 2016, pp 23–37. 65. FINKEL OM, CASTRILLO G, HERRERA PAREDES S, SALAS GONZÁLEZ I, DANGL JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol, 2017, 38: 155–163 66. FLAISHMAN MA, EYAL Z, ZILBERSTEIN A, VOISARD C, HAAS D. Suppression of septoria tritici blotch and leaf rust of wheat by recombinant cyanide-producing strains of Pseudomonas putida, Molecular Plant-Microbe Interactions, 1996, 9(7):642-645. 67. FOTI MC. Antioxidant properties of phenols. J Pharm Pharmacol 2007, 59:1673-1685. 68. FOWLER .W D. and J. W. KLOEPPER. Broad-Spectrum Protection Against Several Pathogens by PGPR Mixtures Under Field Conditions in Thailand. Plant Dis. Thailand, 2003, 87. No. 11:1390-139469. FRANCKI RIB, Mossop DW, Hatta T. Cucumber mosaic virus. In: Harrison BD, Mutant AF, editors. CMI/AAB Descriptions of Plant Viruses, 1979, vol. 213. p. 6. 70. FRANK, B. Uber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft, 1889, No. 7, 332-346 71. FRAVEL DR. Role of antibiosis in the biocontrol of plant diseases. Annu. Rev. Phytopathol. 1988; 26:75-91. 72. FRY SC. Cross-linking of matrix polymers in the growing cells of angiospems. Ann Rev Plant Physiol, 1986, 37: 165-186. 73. FU ZQ, DONG X. Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol, 2013, 64: 839–863 74. GALLITELLI, D. The ecology of the cucumber mosaic virus and sustain-nable agriculture. Virus Research, 2000, 71, 9-21. 75. GAMALERO, E. AND GLICK, B. R. Bacterial modulation of plant ethylene levels. Plant Physiol, 2015, 169(1):13-22. 76. GARCDA-ARENAL F, PALUKAITIS P, EDITORS-IN-CHIEF: BWJMAHY, M. H. V. VAN REGENMORTEL.Cucumber Mosaic Virus. In: Garcda-Arenal F, Palukaitis P, Editors-in-Chief: BWJMahy, M. H. V. van Regenmortel, editors.Encyclopedia of Virology (Third Edition).Oxford: Academic Press, 2008, p 614-19. 77. GAUDY, A. F., ABU-NIAJJ,F. and GAUDY,E.T. Statistical study of thespot-plate technique for viable-cell counts. Appl. Microbiol, 1963, 11:305–309. 78. GLICK BR, CHENG Z, CZARNY J, DUAN J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Europian Journal Plant Pathology, 2007, 119:329-39. 79. GLICK, B. R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 2014, 169, 30–39. doi:/10.1016/j.micres.2013.09.009. gloeosporioides. Mol Plant-Microbe Interact 8: 398-406. 80. GLICK, B. R. The enhancement of plant growth by free living bacteria. Canadian Journal of Microbiology, 1995, 41,109–117. doi:10.1139/m95-015. 81. GLOZER, K. Protocol for leaf image Analysis- surface Area. Dept. of plant Sciences, University of California, Davis, 2008, 95(6), 8-25. 82. GOSWAMI, D., PITHWA, S., DHANDHUKIA, P., & THAKKER, J. N. Delineating Kocuria turfanensis 2M4 as a credible PGPR: A novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 2014, 9, 566–576. 83. GOVINDASAMY, V., SENTHILKUMAR, M., MAGHESHWARAN, V., KUMAR, U., BOSE, P., SHARMA, V., & ANNAPURNA, K. Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria, 2011, (pp. 333–364). Berlin:Springer-Verlag. 84. GOZZO, F. Systemic resistance in crop protection: From nature to achemical approach. J. Agric. Food. Chem, 2003, 51:4487-4503. 85. GUNASINGHE U., BERGER P. Association of potato virus Y gene products with chloroplasts in tobacco. Mol. Plant. Microbe Interact, 1991, 4, 452–457. 86. GUPTA G, PARIHAR SS, AHIRWAR NK, SNEHI SK, SINGH V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol, 2015, 7:096–10287. GURGUL E, and HERMAN B. Influence of nitrogen, phosphorus and potassium on chemical composition andactivity of some enzymes in celery during its growth. J. Biologia Plantarum, 1994, 36: 261-265. 88. HAHM. M, J. SON, Y. HWANG, D. KWON, AND S. GHIM. Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria. J. Microbiol. Biotechnol, 2017, 27(10), 1790–1797. 89. HAMAD, Y. isolation and identification of some species of plant growth promoting rhizobacteria(pgpr)from some bio-fertilizers ,the arab journal foe arid environment, 2020, Vol. 13(1), p:23 - 31 90. HAMMERSCHMIDT, R., E.M NUCKLES,. AND J KUC. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology,1982, 20: 73-82. 91. HAMMERSCHMIDT. R., J.P. M´ETRAUX, AND L.C. VAN LOON. Inducing resistance: a summary of papers presented at the First International Symposium on Induced Resistance to Plant Diseases, Corfu. European Journal of Plant Pathology, 2001, 107: 1–6. 92. HARRISON SJ, CURTIS MD, MCINTYRE CL, MACLEAN DJ, MANNERS JM. Differential expression of peroxidase isogenes during the early stages of infection of the tropical forage legume Stylosanthes humilis by Colletotrichum gloeosporioides. Mol Plant-Microbe Interact, 1995, 8: 398–406 93. HEATH, M C. Hepersensitive response- related death. Plant Mol Biol, 2000, 44: 321-334. 94. HEIL M. Systemic acquired resistance: available information and open ecological questions. J Ecol, 1999, 87:341-346. 95. HILTNER, L. About recent experiences and problems the field of soil bacteriology with special Consideration of green manure and fallow. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 1904, 98, 59–78. 96. HIRAGA S, ITO H, YAMAKAWA H, OHTSUBO N, SEO S. An HR-induced tobacco peroxidase gene is responsive to spermine, but not to salicylate, methyl jasmonate, and ethephon. Mol. Plant Microbe Interact, 2000, 13: 210-216. 97. HONDO D, S. HASE, Y. KANAYAMA, N. YOSHIKAWA, S. TAKENAKA AND H. TAKAHASHI. The LeATL6 -associated ubiquitin/proteasome system may contribute to fungal elicitor-activated defense response via the jasmonic acid-dependent signaling pathway in tomato. Mol Plant-Microbe Interact, 2007, 20:72–81. 98. HORVATH DM, AND CHUA NH. The role of salicylic acid in systemic acquired resistance. Curr Opin Biotechnol,1994, 5:131-136. 99. HU, C., Hsu, Y. & Ling, N. Satellite RNAs and satellite viruses of plants. Viruses, 2009, 1(3),1325-350. 100. HULL, R. Matthews‟ Plant Virology. 4th ed. Academic press, 2002. 101. HUSSAIN M, NAWAZ K, MAJEED A, ILYAS U, LIN F, ALI K, NISAR MF. Role of exogenous salicylic acid applications for salt tolerance in violet. Sarhad J. Agric, 2011, 27:151-175. 102. IBRAHIM. A., H. Abdel-Razzak., M. Wahb-Allah., M. Alenazi ., A. Alsadon ., and Y. H. Dewir. Improvement in Growth, Yield, and Fruit Quality of Three Red Sweet PepperCultivars by Foliar Application of Humic and Salicylic Acids, HortTechnology, 2019, 04263-18. 103. ILLMER, P. AND SCHINNER, F. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem, 1995, 27: 265-270. 104. JACKSON, M. L. Soil chemical analysis-advanced course, 2nd, 1985. 105. JACOBSEN, B. J. Managing PVY in Potato. Montana State University, Bozeman, MT uplbj@montana.edu. Western Washington Potato Workshop, 2013, p47 106. JAIN A, SINGH A, SINGH S, SHARMA BK, SINGH HB. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction, Journal of Basic Microbiology, 2015, 55(5): 601-606. 107. JAIN A, SINGH A, SINGH S, SINGH HB. Microbial consortium-induced changes in oxidative stress markers in peplants challenged with Sclerotinia sclerotiorum. Journal of Plant Growth Regulation, 2013, 32(2):388-398. 108. JAIN A, SINGH S. KUMAR SHARMA B, BAHADUR H, SINGH A. Microbial consortium- mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum, Journal of Applied Microbiology, 2012, 112(3):537-550. 109. JAMAL Q, Y. S. LEE, H. D. JEON and K. Y. KIM. Effect of Plant Growth-Promoting Bacteria Bacillus amyloliquefaciens Y1 on Soil Properties, Pepper Seedling Growth, Rhizosphere Bacterial Flora and Soil Enzymes. Plant Protect. Sci.,2018. Vol. 54, No. 3: 129–137 110. JAMAL Q., YONG. S. L., HYEON D. J. AND KIL Y.G K. Effect of Plant Growth Promoting Bacteria Bacillus amyloliquefaciens Y1 on Soil Properties, Pepper Seedling Growth, Rhizosphere Bacterial Flora and Soil Enzymes. Plant Protection Science, 2016, 10.17221/154. 111. JARAK.M.N., S.S.DURIC and B.D.DORDEVIC. Benefits Of inoculation with Azotobacter in the growth production of Tomato and Pepper. Proc. Nat. Sci, Matica Srpska Novi Sad. Serbia, 2010, No 119, 71-76 112. JEFFRIES, C.J. Potato. FAO/IPGRI technical guidelines forthe safe movement of germplasm, 1998, 19, 62–63 113. JETIYANON., KANCHALEE AND W. K. JOSEPH. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 2002 24: 285–291. 114. JHA, C. K., AERON, A., PATEL, B. V., MAHESHWARI, D. K., & SARAF, M . Enterobacter: Role in plant growth promotion Bacteria in agrobiology: Plant growth responses Berlin: Springer Berlin Heidelberg, 2011, pp. 159–182. 115. JHA, C. K., PATEL, D., RAJENDRAN, N., & SARAF, M. Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha Curcas L. Journal of Basic Microbiology, 2010, 50, 211–217. doi:10.1002/ jobm.200900272. 116. JONES JDG, DANGL JL. The plant immune system. Nature, 2006, 444: 323–329. 117. JORQUERA, M.A., HERNÁNDEZ, M.T., RENGEL, Z., MARSCHNER, P., MORA M.L.. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol. Fértil. Soils, 2008a, 44, 1025-1034.118. KALAIVANI, M., JEBAESAN, A., MARAGATHAVALLI, S., ANNADURAI. B. AND GANGWAR, S. K. Studies On Chlorophyll Content, Soluble Protein, Carbohydrates And Moisture Content OF Morus alba Linn. International Jornal of Science and Nature, 2013, Vol. 4(1) :P 131- 137. 119. KANDAN, A., RADJACOMMARE, R.,RAMIAH, M., RAMANATHAN, A. AND SAMIYAPPAN, R. PGPR induced systemc resistance in cowpea against Tomato Spotted Wilt Virus by activating defense against tomato spotted wilt virus by activating defense related enzymes and compound. 6th Int. PGPR Workshop, 2003, pp.480-486. 120. KARPAGAM,T. & NAGALAKSHMI, K. Isolation and characterization of Phosphate Solubilizing Microbes from Agricultural soil. Int .J. Curr. Microbiol. App. Sci 3(3). 2014. p 601-614. 121. KATULA, L.; MAKKOUK, K. M. Occurrence and serological relatedness of five cucurbit potyviruses in Lebanon and Syria. Gen. Virol, 1987, 85, 3757-3763. 122. . KAWAS , H. Studies on tomato viral diseases in southern Syria, and screening cultivars for resistance to infection with viruses. Ninth Arab Congress of Plant Protection, Damascus, Syria, 2006, 19-23. 123. KATAN, J. Mineral nutrien management and plant disease. Optimizing Crop Nutrition, 2009, No. 21, 6-8. 124. KAWANO T, MUTO S. Mechanism of peroxidase actions for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco suspension culture. J Exp Bot, 2000, 51: 685-693. 125. KAWAS, H.; O. HAMUDI, A. AHMAD, AND I.D. ISMAIl. Evaluation of four strains of plant growth promoting rhizobacter to induce systemic resistance against Cucumber mosaic virus in tomato plants under greenhouse. International Journal of Agriculture & Environmental Science (SSRG-IJAES), 2017, Volume 4, Issue 6. 126. KEEL C, SCHNIDER U, MAURHOFER M, VOISARD C, LAVILLE J, BURGER U ET AL. Suppression of root diseases by Pseudomonas fluorescens CHA0 - importance of the bacterial secondary metabolite 2,4- diacetylphloroglucinol. Molecular Plant Microbe Interactions, 1992, 5:4-13. 127. KEEL C., VOISARD C., BERLING C., KAHR G., DÉFAGO G. Iron sufficiency, a prerequisite for the suppression of tobacco black root rot by Pseudomonas fluorescens strain CHA 0 under gnotobiotic conditions. Phytopathology, 1989, 79, 584–589. 10.1094/Phyto-79-584. 128. KESSMANN, H., T. STAUB, C. HOFMANN, T. MAETZKE, J. HERZOG, E. WARD, S.UKENS AND J. RYALS. Induction of systemic acquired disease resistance in plants chemicals. Ann. Rev. Phytopathol, 1994, 32: 439-459. 129. KHALIL. H. M. A., DOAA M. R. ABO-BASHA AND FATMA H. A. EL-AGYZY. Effect of Bacillus circulans bacteria on availability of potassium from different sources on the productivity and quality of pepper under saline soil conditions. Middle East Journal of Agriculture, 2018, 7(2): 339-351. 130. KHAN AL, HALO BA, ELYASSI A, ALI S, AL-HOSNI K, HUSSAIN J, AL-HARRASI A, LEE IJ. Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol, 2016, 21:58–64131. KIM K., JORDAN D., MCDONALD G. Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils, 1997, 26: 79–87. 132. KIPGEN, T. L. AND L. C. BORA. Biochemical Differentiation of Pseudomonas fluorescens of Soil and their Utility in Management of Bacterial Wilt of Solansaceos Crops. International Journals of Current Microbiology and Applied Science, 2017,Vol. 6. Pp 2796-2806. 133. KLOEPPER, J. W., WEI, G. AND TUZUN, S. Rhizosphere population dynamics and internal colonization of cucumber by plant growth promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. In: Biological Control of Plant Diseases, 1992, pp.185-191. 134. KLOEPPER, J.W., LEONG, J., TEINTZE, M. AND SCHROTH, M.N. Pseudomonas siderophores: A mechanism explaining disease suppressive soils. Curr. Microbiol, 1980, 4: 317-320. 135. KNAGGS AR. The biosynthesis of shikimate metabolites. Nat Prod Rep, 2003, 20:119-136. 136. KOBAYASHI, D. Y., REEDY, R. M., BICK, J., & OUDEMANS, P. V . Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology, 2002, 68, 1047–1054. 137. KREMER RJ, SOUISSI T. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth, Current Microbiology, 2001, 43(3):182-186. 138. KRISTENSEN BK, BLOCH H, RASMUSSEN SK. Barley coleoptile eroxidases. Purification, molecular cloning and induction by pathogens. Plant physiol, 1999, 20:501-512. 139. Krueger, W. B.; Carey,W.E.; Kolodziej, B.J. (1970). Neutron Activation Analysis of Manganese and Sodium in Bacterial Cells. American Society for Microbiology. Vol. 20, No. 6. Appued Microbiology. p. 946-950. 140. KUC , J AND RICHMOND. Aspcts of the protection of cucumber against colletotrichum lagenarium by colletotrichum lagenarium. Phytopathology, 1977, 67:533-536. 141. KUC. J. Induced immunity to plant disease. Bioscience, 1982, 32: 854-860. 142. LANCIONI, P. Studies on biotic and abiotic elicitors inducing defense responses in tomato. Ph.D. Thesis, Phytopathology Dept, Fac. Agric, University of Bologna, Italy, 2008, 125pp. 143. LARCHER, W. (1995). Physiological plant ecology. In Ecophysiology and Stress Physiology of Functional Groups, 4th ed. Berlin, Heidelberg, Germany: Springer Verlag. 144. LECOP, H. Control of plant virus diseases by cross protection. In : . Hadidi, R. K. Khetarpal and H. Koganezawa (Eds) Plant Virus Disease Control,APS Press, 1998, pp 33-40, St. Paul. 145. LEE, G. H., AND RYU, CHOONG-MIN. Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus. plant disease, 2016,100:2099.146. LEONTIDOU. K., SAVVAS .G., ANASTASIA .P., NATHALIE. K., IRENE .B., THEODORA .M., PANAGIOTIS .M., DESPOINA .V., KATERINA. K. AND IFIGENEIA .M. Plant growth promoting rhizobacteria isolated from halophytes and drought‑tolerant plants: genomic characterization and exploration of phyto‑beneficial traits. Scientific Reports, 2020, 10:14857. 147. LI. N., CHUYING. Y., YANXU. Y., SHENGHUA. G., FEI. W., CHUNHAI. J., AND MINGHUA. Y. Pepper Crop Improvement Against Cucumber Mosaic Virus (CMV): A Review. Front. Plant Sci, 2020, 11:598798. doi: 10.3389/fpls.2020.598798. 148. LICHTENTHALER, H.K. Vegetation Stress: An Introduction to the Stress Concept in Plants. Journal of Plant Physiology, 1996, 148(1-2), 4-14. doi:10.1016/ S0176-1617(96)80287-2. 149. LIM, B.L., YEUNG, P., CHENG, C, HILL, J.E. Distribution and diversity of phytate-mineralizing bacteria. ISME J, 2007, 1, 321-330. 150. LIN, S.S., HENRIQUES, R., WU, H.W., NIU, Q.W. YEH, S.D. CHUA, N.H. PALUKAITIS, P. & F. GARCIAARENAL. Cucumoviruses,” Advances in Virus Research, 2003, 62 , 241-323. 151. LONG, S.P., HUMPHRIES, S., AND FALKOWSKI, P.G. Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 1994, 45(1), 633- 662. doi:10.1146/annurev. pp.45. 152. MAHDY., A.M.M.; M.A. HAFEZ; KH.A. EL-DOUGDOUG; R.N. FAWZY AND EMAN S.M, SHAHWAN. Effect Of Two Biotic Inducers on Salicylic Acid Induction in Tomato Infected with Cucumber Mosaic Cucumovirus. 3rd Inter. Conf. Virol., Cairo Univ. Center. 24-25. Egyptian J. Virol, SP. Issue, 2010, 355-372. 153. MALAMY, J.; HENNIG, J. AND KLESSIG, D.F. Temperature-dependent induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell, 1992, 4: 359-366. 154. MALKIN, R., & NYOGI, K. Photosynthesis. In B.B. Buchanan, W. Gruissem, & R.L. Jones (Eds.), Biochemistry and Molecular Biology of Plants, 2000, pp. 568-628. Rockville, MD, USA: ASPP. 155. MANDYAL. P, R. KAUSHAL, K. SHARMA and M. KAUSHAL. Evaluation of native PGPR isolates in bell pepper for enhanced growth, yield and fruit quality. International Journal of Farm Sciences, 2012, 2(2) :28-35. 156. MANFRE A., GLENN M., NUNEZ A., MOREAU R., DARDICK C. Light quantity and photosystem function mediate host susceptibility to turnip mosaic virus via a salicylic acid-independent mechanism. Mol. Plant-Microbe Interact, 2011, 24, 315–327. 157. MANILA, S. and NELSON, R. Biochemical changes induced in tomato as a result of arbuscular mycorrhizal fungal colonization and tomato wilt pathogen infection. Asian Journal of Plant Science and Research, 2014, Vol. 4. No.1, 62-68. 158. MARIA J. GIL and VÍCTOR MARTÍNEZ-MERINO. Determination of The Free SalicylicAcid Concentration in Aspirin ByformingFe+3Complexes.www.iupac.org/publications/cd/medicinal_chemistry/, 2007, p8.159. MATEO A, MU¨ HLENBOCK P, RUSTERUCCI C, CHANG CC, MISZALSKI Z,KARPINSKA B, PARKER JE, MULLINEAUX PM, KARPISNKI S. lesion simulating disease1 is required for acclimation to conditions that promote excess excitation energy. plant physiology, 2004, 136, 2818–2830. 160. MAURHOFER M, REIMMANN C, SCHMIDLI-SACHERER P, HEEB S, HAAS D, DÉFAGO G. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology, 1998, 88:678–684. 161. MAYZ JULIANA; LORNA MANZI AND AMERICA LAREZ. Isolation, Characterization and Identification of Hydrocarbonoclastic Pseudomonas Species Inhabiting the Rhizospere of Crotalaria micans Link. European Journal of Experimental Biology, 2013, 3(5): pp. 313-321. 162. MCKELLAR ME, NELSON EB. Compost-induced suppression of Pythium damping-off is mediated by fatty-acidmetabolizing seed-colonizing microbial communities, Applied and Environmental Microbiology, 2003, 69(1):452-460. 163. MEENA, K. N., NAYAN TARA AND BALJEET SINGH SAHARAN. Review on PGPR: An Alternative for Chemical Fertilizers to Promote Growth in Aloe vera Plants. International Journal of Current Microbiology and Applied Sciences, 2018, Volume 7 Number 03. P6. 164. MEGAHED, A.A. Effect of antiviral proteins produced by bacterial and fungal isolates on some viruses infecting vegetable crops. M.Sc. Thesis, Faculty of Agriculture, Ain Shams University, Cairo, Egypt, 2008, 193p. 165. MELOTTO M, UNDERWOOD W, KOCZAN J, NOMURA K, HE SY. Plant stomata function in innate immunity against bacterial invasion.Cell, 2006, 126, 969–980. 166. MIAO G, JIAN-JIAO Z, EN-TAO W, QIAN C, JING X, JIAN-GUANG S. Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric, 2014, 14:1855–1863 167. MICHALAK A. Phenolic Compounds and Their Antioxidant Activity in Plants Growing under Heavy Metal Stress. Pol J Environ Stud, 2006, 15:523-530. 168. MISHRA., S.; KAVI, S. A. J.; PALLIATH U. K.; SAGAR P. Biocontrol of Tomato Leaf Curl Virus (ToLCV) in tomato with chitosan supplemented formulations of Pseudomonas sp. under field conditions. AJCS, 2014, 8(3):347-355 ISSN:1835-2707. 169. MITCHELL A, WALTERS D. Systemic protection in barley against powdery mildew infection using methyl jasmonate. Aspects appl. Boil, 1995, 42:323-26. 170. MONTASSER .M. S.., N. H. DASHTI., N. Y. ALI and V. M. CHERIAN. Biological Control of a severe viral strain of Cucumber Mosaic Virus(CMV) using a mild strain of CMVassociated with viral satRNA combined with a mixture of plant growth promoting rhizobacteria (PGPRs). Int J biotech & bioeng, Kuwait, 2017, 3.5, 126-134 171. MONTASSER, M. S., DASHTI, N. H., ALI, N.Y., BHARDWAJ, R. AND AL-HAMAR, B. Occurrence of three strains of cucumber mosaic virus affecting tomato in Kuwait. Plant Pathol. J, 2006, 22 (1), 51-62. 172. MONTIEL, L. G. H, ROBERTO G. C. C, DORIS G. C.R., CÉSAR J. C. C., LIBRADO V.H, FÉLIX A. B. M. Effect of microcapsules of Pseudomonas putida on growth and yield of red pepper. Revista Mexicana de Ciencias Agrícolas special, 2018, vol num 20173. MURPHY AM, A. GILLILAND, C.J. YORK, B. HYMAN, J. P. CARR. High-level xpression of alternative oxidase protein sequences enhances the spread of viral vectors in esistant and susceptible plants. J Gen Virol, 2004, 85:3777–3786. 174. MURPHY, A. M; J. CARR. Salicylic acid has cell-specific effects on tobacco mosaic virus replication and cell-to-cell movement. Plant Physiol. Feb; 2002 ,128 (2) ,552-63. 175. MURPHY, A., CHIVASA, S., SINGH, D. AND CARR, J. Salicylic acid-induced resistance to viruses and other pathogens: a parting of the ways. Trends in Plant Science Reviews, 1999, 4, 155-160. 176. MURPHY, J. and RILEY, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal.Chim .Acta, 1962, 27, 31-36. 177. MURPHY, M., MURPHY, A., BERRY, J. AND CARR, J. Salicylic Acid can induce resistance to plant virus movement. Molecular plant - Microbe Interactions, 1998, 11, 860-868. 178. MURPHY., J. F.; M. S. REDDY; CH.-M. RYU, J. W. KLOEPPER AND R. LI.Rhizobacteria-Mediated Growth Promotion of Tomato Leads to Protection Against Cucumber mosaic virus. Phytopathology, 2003, 93. p1301-1307. 179. MUSA S., T. ÖNDER., P. MUSTAFA. Effect of plant gpowth promotion rhizobacteria (PGPR) on yield, yield components and mineral contents of pepper under greenhouse conditions, International Journal of Ecosystems & Ecology Sciences; 2013, Vol. 3 (4), p645 180. NAKKEERAN. S.,K. KAVITHA,G. CHANDRASEKAR,P. RENUKADEVI AND W. G. D. FERNANDo. Induction of plant defence compounds byPseudomonas chlororaphis PA23 and Bacillus subtilis BSCBE4 in controlling damping-off of hot pepper caused by Pythium aphanidermatum, Biocontrol Science and Technology, 2006, Volume 16, Pages 403-416. 181. NASSAR, G.A. Algal activity against local and systemic plant viral infection. Ph.D. Thesis, Faculty of Science, Zagazig University, Zagazig, Egypt, 1998, 164p. 182. NAYLOR, M., MURPHY, A., BERRY, J. AND CARR, J. Salicylic Acid can induce resistance to plant virus movement. Molecular plant - Microbe Interactions, 1998, 11, 860-868. 183. NG JCK, FALK BW. Virus-vector interactions mediating non persistent and semi persistent transmission of plant viruses. Annual Review of Phtopathology. Palo Alto, 2006, v.44, p.183-212. 184. .. NG JCK, LIU SJ, PERRY KL. Cucumber mosaic virus mutants with altered physical properties and defective in aphid vector transmission. Virology, 2000, 276:395–403. 185. NIE, X . Salicylic acid suppresses Potato virus Y isolate N:O-induced symptoms in tobacco plants. Phytopathology, 2006, 96:255–263. 186. NIENHAUS, F. Virus and similar diseases in tropeical and subtropical areas.Published by German Agency for Technical Cooperation(GTZ), 1981, 16-20p. 187. NIHORIMBERE V, ONGENA M, SMARGIASSI M, THONART P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnology, Agronomy and Society and Environment, 2011, 15(2):327-337. 188. NOVOZAMSKY, I., VAN, R., SCHOUWENBURG, CH., and WALTING, I. Total nitrogen determination in plant material by means of the indophenols-blue method. Neth. J. Agric Sci, 1974, 22, 3-5.189. NTUI, V.O., K. KYNET, P. AZADI, R.S. KHAN, C. DONGPOH, & I. NAKAMURA. Transgenic accumulation of a defective Cucumber mosaic virus (CMV) replicate derived double stranded RNA modulates plant defense against CMV strains O and Y in potato. Transgenic Research, 2013, 22: 1191–1205. 190. OBERSON, A., FROSSARD, E., BÜHLMANN, C., MAYER, J., MÄDER, P ,. &LÜSCHER, A. Nitrogen fixation and transfer in grassclover leys under organic and conventional cropping systems. Plant and Soil, 2013, 371, 237–255. 191. OLSEN.SR AND SOMMERS.LE. Methods of soil analysis, part2, Am. Soc. Agron. Madison WI, USA, 1982, 403-430. 192. ORDOOKHANI, K. AND M. ZARE. Effect of Pseudomonas, Azotobacter and arbuscular mycorrhizal fungi (AMF) on lycopene, antioxidant activity and total soluble solid in tomato (Solanum lycopersicum L) F1 Hybrid, Delta. Adv. Environ. Biol, 2011, 5(6):1290-1294. 193. ORDOOKHANI, K.; A MOEZI.; K. KHAVAZI, AND F. REJALi. Effect of plant growth promoting rhizobacteria and mycorrhiza on tomato fruit quality. Acta Hort, 2013, 989(1):91-96. 194. ORTIZ CASTRO R, VALENCIA-CANTERO E, LOPEZ-BUCIO J. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal Behav, 2008, 3:263–265. 195. PALUKAITIS P, GARCÍA-ARENAL F. Cucumoviruses. Advances in Virus Research, 2003, Vol. 62: p241–323. 196. PALUKAITIS, P., ROOSSINCK, M. J., DIETZGEN, R. G., FRANCKI, R.I.B. „„Cucumber mosaic virus.‟‟, Advances in Virus Research, 1992, Vol. 41, pp. 281-341. 197. PARKE JL. Root colonization by indigenous and introduced microorganisms. N: the Rhizosphere and Plant Growth. DL Keister, and PB Gregan (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990, pp. 33-42 198. PASSARDI F, COSIO C, PENEL C, DUNAND C. Peroxidases have more functions than a Swiss army knife. Plant CHK.DL HGFDV. SDH. ,ell Rep, 2005, 24: 255-265. 199. PASTOR N, ROSAS S, LUNA V, ROVERA M. Inoculation with Pseudomonas putida PCI2, a phosphate solubilizing rhizobacterium, stimulates the growth of tomato plants. Symbiosis, 2014, 62:157–167. 200. PAUL. D and Y. R. SARMA. Plant growth promoting rhizhobacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS Root software. Journal Archives of Phytopathology and Plant Protection, 2007, VOL39(4):311-314. 201. PiETERSE CMJ, ZAMIOUDIS C, BERENDSEN RL, WELLER DM, VAN WEES SCM, BAKKER AHM. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol, 2014, 52: 347–375 202. POSMYK MM, KONTEK R, JANAS KM. Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotox Environ Saf, 2009, 72:596-602. 203. PRABHA. D., Y.K.NEGI. Seed Treatment with Salicylic Acid Enhance Drought Tolerance in Capsicum, World Journal of Agricultural Research, 2014, Vol. 2, No. 2, 42-46204. PROTASIUK. E., M. OLEJNIK. Determination of salicylic acid in feed using LC-MS/MS, J Vet Res, 2018, 62, 303-307. 205. QUIROGA M, GUERRERO C, BOTELLA MA, BARCELO A, AMAYA I, ET AL. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol, 2000, 122 - 112 1119. 206. RAJA, G. Efficacy of Biofertilizers on Changes in Morphological, Physiological and Biochemical Parameters in Jatropha curcas L. Department of Plant Science. Bharathidasan University. Tamil Nadu, India. Doctor of Philosophy in Plant Science, 2012, P 148. 207. RAJPOOT, P., and PANWAR, K. S. (2013). Isolation and Characterization of Rhizobia and their Effect on Vigna radiata Plant. Journal of Academia and Industrial Research (JAIR),Vol. 3, No. 2, 84-88. 208. RAMAMOORTHY.,V., R. VISWANATHAN, T. RAGUCHANDER, V. PRAKASAM,and R. SAMIYAPPAN. Induction of systemic resistance by plant growth promotingrhizobacteria in crop plants against pests and diseases. Crop Protection, 2001, 20 ( 1)11. 209. RAMETTE A, FRAPOLLI M, DEFAGO G, MOENNE-LOCCOZ Y. PHYLOGENY OF HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability, Molecular Plant- Microbe Interactions, 2003, 16(6):525-535. 210. RASKIN, L. Role of salicylic acid in plants. Annual Rev. Plant physiol. Plant Mol. Biol, 1992, 43:439-463. 211. RASMUSSEN, J.B., SMITH, J.A., WILLIAMS, S., BURKHART, W., WARD, E., SOMERVILLE, S.C., RYALS, J. AND HAMMERSCHMIDT, R. Physiol. Mol. Plant Pathol. (PDF) A large family of Class III plant peroxidases. Available from: https://www.researchgate.net/publication/11955797_A_large_family_of_Class_III_plant_peroxidases,1995, 46: 389–400. [accessed Sep 01 2018]. 212. RATNAWATI, SYAMSUDDIN,AND SYAFRUDDIN. Growth and yield of red chili pepper (Capsicum annuum L.) by seed treatment with rhizobacteria as a plant growth promoting . Int. J. Agron. Agri. R.( IJAAR), 2018,Vol. 12, No. 6, p. 101-108 213. RAUPACH., GEORG S., LI LIU, JOHN F. MURPHY, T. SADIK AND W. JOSEPH. KLOPPER. Induced Systemic Resistance in Cucumber and Tomato Against Ccumber Mosaic Cucumovirus Using Plant Growth Promoting Rhizobacteria (PGPR). Plant Dis, 1996, 80:891-894. 214. RAY & BEAUVENE. Les malaides cryptogamiques des vegetaux. Rev. Gen. Bot, 1901, 13:163-175 215. REDDICK, B. B. AND HABERA, L. F. New Resistance to Plant Viruses in Pepper. The University of Tennessee, Knoxville,TN, USA, 1999. 216. REIMERS PJ, GUO A, LEACH JE. Increased activity of a cationic peroxidase associated with an incompatible interaction between Xanthomonas oryzae pv oryzae and rice (Oryza sativa). Plant Physiol, 1992, 99: 1044-1050. 217. RHODES, M. E,; The characterization of pseudomonas fluorescens. Journal of Micobiology, 1959, Vol 21. Pp 221-263. 218. RICHARDS.LA. Diagnosis and improvement of saline and alkaline soils. USDA Agric Handbook 60, Washington DC, 1954.219. RIZVI A, KHAN MS, AHMAD E. Inoculation impact of phosphate-solubilizing microorganisms on growth and development of vegetable crops. In: Khan MS et al (eds) Phosphate solubilizing microorganisms. Springer International Publishing, Switzerland, 2014, pp 287–297. 220. RODRÍGUEZ G. G., B. E. PALOMEQUE ., P. C. RÍOS., A. M. RESÉNDEZ., L. L. ESCOBEDO., H. S. GALVÁN., J. S. Mata. Influence of rhizobacteria in production and nutraceutical quality of tomato fruits under greenhouse conditions. Revista Mexicana de Ciencias Agrícolas, 2018, 9 (2) 221. ROOSSINCK, M.J., ZHANG, L. AND HELLWALD, K.H. Rearrangements in the 59 non translated region and phylogeneticanalysis of Cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. Journal of Virology, 1999, 73: 6752–6758. 222. ROSIER, A., FLÁVIO H. V. MEDEIROS & HARSH P. BAIS. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Marschner Review. Plant Soil, 2018, 428:35–55 223. ROSS, A.F. Systemic acquired resistance by localized virus infections in plants. Virology, 1961, 14: 340-358. 224. RYALS, J., U.NEUENSCHWANDER, M. WILLITS, A. MOLINA, H. STEINER AND M. HUNT. Systemic acquired resistance. Plant Cell, 1996, 8: 1809-1819. 225. SABERI-RISEH, ROOHALLAH., FARIBA FATHI AND MOJTABA MORADZADEH-ESKANDARi. Effect of some Pseudomonas fluorescens and Bacillus subtilis strains on osmolytes and antioxidants of cucumber under salinity stress. J. Crop Prot. 2020, 9 (1): 1-16. 226. SABIR TARIQ, R. M., KHALIDP. AKHTAR., AMJAD HAMEED., NAJEEB ULLAH., MUHAMMAD Y. SALEEM., IMRAN UL HAQ. Determination of the role of salicylic acid and Benzothiadiazole on physico-chemical alterations caused by Cucumber mosaic virus in tomato, European Journal of Plant Pathology, 2018, Volume 150, Issue 4, pp 911–922. 227. SAHARAN., BS and V NEHRA. Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sciences and Medicine Research, 2011, Volume: LSMR-21. 228. SELEIM, M. A., ELYOUSR, K. A., MOHAMED, A. A. and MARZOKY, H. A. Peroxidase and polyphenoloxidase activities as biocontrol markers for biocontrol efficacy in the control of tomato bacteria wilt. Plant Physiol Pathol, 2014, 2, 1-4. 229. SELVAKUMAR G, BINDU GH, BHATT RM, UPRETI KK, PAUL AM, ASHA A, SHWETA K, SHARMA M. Osmotolerant cytokinin producing microbes enhance tomato growth in deficit irrigation conditions. Proc Natl Acad Sci, India, 2016, Sect B Biol Sci. doi:10.1007/s40011-016-0766-3. 230. SHAHWAN.,EMAN SHAHWAN MOHEB EL-DIN. Inducing systemic resistance against some tomato virus diseases. dissertation Submitted in Partial Fulfillment of the Requirements for The Degree of DOCTOR OF PHILOSOPHY in PLANT PATHOLOGY, Viral Diseases, 2010, Pp: 256. 231. SHAKIROVA, F. M. Role of Hormonal System in the Manifestation of Growth Promoting and Antistress Action of Salicylic Acid. A Plant Hormone, 2003, Pp 69-89232. SHOMAN., SAHAR A., NAGWA A. ABD-ALLAH AND ASHRAF F. EL-BAZ. Induction of resistance to tobacco necrosis virus in bean plants by certain microbial isolates. Egyptian Journal of Biology, 2003, Vol. 5, pp 10-18. 233. SIDDIKEE, M. A., CHAUHAN, P. S., ANANDHAM, R., HAN, G. H., & SA,T. Isolation, characterization, and use for plantgrowth promotion under salt stress, of ACC deaminaseproducing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 2010, 20,1577–1584. 234. SIDDIQUI IA, SHAUKAT SS, SHEIKH IH, KHAN A. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica I tomato, World Journal of Microbiology and Biotechnology, 2006, 22(6):641-650. 235. SIGMA-ALDRICH. Technical Bulletin- Peroxidase Activity Assay Kit, , Catalog Number MAK092, USA, 2014, Pp4. 236. SIKORA, E. J. Cucumber Mosaic Virus Plant Disease Notes, 2004, ANR-868. Singh A. 237. SIMAEI M, KHAVARI-NEJAD RA, BERNARD F. Exogenous application of salicylic acid and nitric oxide on the ionic contents and enzymatic activities in nacl-stressed soybean plants. American Journal of Plant Sciences, 2012, 3: 1495-1503 238. SINGH, D.P.; MOORE, C.A.; GILLILAND, A. AND CARR, J.P. Activation of multiple antiviral defense mechanisms by salicylic acid. Molecular Plant Pathology, 2004, 5, 57–63. 239. SINGH.,JAY SHANKAR. Plant Growth Promoting Rhizobacteria Potential Microbes for Sustainable Agriculture. (Central) University, Raibarely Road, Lucknow 226025 Uttar Pradesh, India, 2013, pp7. 240. SINGLETON V L & ROSSI J A JR. Colorunetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer. J. Enol. Viticult, 1965, 16:144-58. 241. SIVASAKTHI., S.; G. USHARANI & P. SARANRAJ. Biocontrol potentiality of plant growth promoting bacteria (PGPR) Pseudomnas fluorescens and Bacillus sbtils: A review. African Journal of Agriculture research, 2014, 9(16).8 pp. 1265-1277. 242. SLEPECKY, R. A. & HEMPHILL, H E. The Genus Bacillus Nonmedical. DOI: 10.1007/0-387-30744-3_16. Chapter 1.2.16. Prokaryotes, 2006, 4:530–562. 243. SOFY. A. R. ,M.R SOFY, A A HMED,N. K. MEGHAWRY. Potential Effect of Plant Growth-Promoting Rhizobacteria (PGPR) on Enhancing Protection Against Viral Diseases. Sustainable Development and Biodiversity,2019, volume( 23) pp 411-445 244. SOLEIMANI, P., MOSAHEBI, G., AND HABIBI, M.K. Identification of some viruses causing mosaic on lettuce and characterization of Lettuce mosaic virus from Tehran Province in Iran. Afr. J. Agric.Res, 2011, 6 (13): 3029–3035. 245. SOLEIMANI. PARISA, SAMIN HOSSEINI and AHMAD HOSSEINI Distribution of some viral disease on pepper (Capsicumannum) plants in Dezful fields fromIran. Bull. Env. Pharmacol. Life Sci, 2014, Vol 3 (4):111-114. 246. STACEY, G., BURRIS, R. H., & EVANS, H. J. (EDS.). Biological nitrogen fixation. Berlin: Springer Science & Business Media, 1992, p1226. 247. STEVENS J, SENARATNA T, SIVASITHAMPARAM K. Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv.Roma): associated changes ingas exchange, water relations and membrane stabilisation. Plant Growth Regulation, 2006, 49, 77–83. 248. STICHER, L; MAUCH-MANI B; AND METUREX J.P. Systemic acquired resistance. Ann. Rev. Phytopathol, 1997, 35:235-270. 249. SUBHASHINIA .D.V., M. ANURADHAB, D. DAMODAR REDDYA, J. VASANTHIA. Development of bioconsortia for optimizing nutrient supplementation through microbes for sustainable tobacco production. International Journal of Plant Production, 2016, 10(4): 479-490 250. SUDHAKAR, N., NAGENDRA PRASAD, D., MOHAN, N AND MURUGESAN, K. First report of Cucumber mosaic virus subgroup II infecting Lycopersicon esculentum in India. Plant Disease,2006, 90 (11): 1457 251. SUMAN, B.; A. VIJAYA GOPAL; SUBHASH REDDY AND S. TRIVENI. Isolation and Characterization of Pseudomonas fluorescens in the rice rhizospheric soils of Rangareddy district in Telangana state. International Journal of Microbiology Research and Reviewsvol, 2016, 5(1), pp 164-169. 252. SUTIC, P., D.D., FOR, R.E.,and TOSIC, M.T. Hand book of plant virus diseases. CRC prees, 1999, 126-134pp. 253. SWARNALAKSHMI. K., VANDANA. Y., DEEPTI .T., DOLLY W. D., ANNAPURNA .K AND SHIV .K. Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production, Plants , 2020, 9, 1596. 254. SWINGS,J.; GILLIS, M.; KERSTERS, K.; DE VOS, P.; GOSSEL, F.; DE LEY, J. Frateuria, a New Genus for “Acetobacter aurantius”. International jOurnalof Systemati bca Cteriologjuyly, 1980, Vol. 30, No. 3. P. 547-556 255. SYLVIA, D. M. (1997). Principles and Applications of Soil Microbiology. Through These Fires Living Books,1997, No 46. P192. 256. Taha, M.A.T. Biological control of cucumber mosaic virus ( cucumovirus) by certain local streptomycetal isolates. M.Sc. Thesis, Faculty of Agriculture, Ain Shams University, Cairo,Egypt, 2010, 217p. 257. TAKARAI, K.; OKUBO, H.; YAMASAKI, S.; TAKESHITA, M. ANDTAKANAMI, Y. A Cucumber mosaic virus isolated from Momordica charantia L. Journal of General Plant Pathology, 2006, 72 (6): 391-392. 258. TAN, X., ZHANG, D., WINTGENS, C., WILLINGMANN, P., ADAM, G. AND HEINZE, C. A comparative testing of cucumber mosaic virus (CMV)- based constructs to generate virus resistant plants. American. J. Plant Sci, 2012, 3, 461-472. 259. TECHNICAL DATA (2011, a). Ashbys Mannitol Agar M706. HiMedia Laboratories. P3. 260. TECHNICAL DATA. (2011, d). Pikovskayas Agar M520. HiMedia Laboratories.. P2. 261. TENDON, H. L. S. Methods of analysis of soil plants, water and fertilization development and consultation. New Delhi, India, 2005. 262. TERRY, L. A AND JOYCE, D. C. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 2004, 32, 1-13.263. THAKKER, J. N, PATEL, S., & DHANDHUKIA, P. C. Induction of defense-related enzymes in banana plants: Effect of live and dead pathogenic strain of Fusarium oxysporum f. sp. cubense. ISRN Biotechnology, 2012. 264. THALER JS, HUMPHREY PT, WHITEMAN NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci, 2012, 17: 260–270 265. THOMASHOW LS, WELLER DM. Role of antibiotics and siderophores in biocontrol of take all disease of wheat. Plant and Soil, 1990, 129:93-99. 266. THORDAL-CHRISTENSEN H, BRANDT J, HO CB, RASMUSSEN, SOREN K, ET AL. cDNA cloning and characterization of two barley peroxidase transcripts induced differentially by the powdery mildew fungus Erysiphe graminis. Physiol Mol Plant Pathol, 1992, 40: 395-409. 267. URBAN, L. A., SHERWOOD, J. L., REZENDE, J. A. M. AND MELCHER, U. Examination of mechanisms of cross protection in non-transgenic plants. In: R. S. S Fraser (Ed) Recognition and Response in Plant-Virus Interactions, Springer, Berlin, 1990, pp. 415-426. 268. UZUNOVA AN, POPOVA LP. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica , 2000, 38, 243–250 269. VALENCIA-CANTERO E, HERNÁNDEZ-CALDERÓN E, VELÁZQUEZ-BECERRA C, JOEL E, LÓPEZ-MEZA A-CR, LÓPEZ-BUCIO J. Role of dissimilatory fermentative iron-reducing bacteria in Fe uptake by common bean (Phaseolus vulgaris L.) plants grown in alkaline soil. Plant Soil, 2007, 291:263–273. 270. VALLAD, G. AND GOODMAN, R. Systemic aquired resistance and induced systemic resistance in conventional agriculture. Review and interpretation. Crop Science, 2004, 44, 1920-1934. 271. VAN LOON LC, VAN KAMMEN A. Polyacrylamide disc lectrophoresis of the soluble leaf proteins from Nicotiana tabacum var. „Samsun‟ and Samsun NN‟: II. Changes in protein constitution after infection with Tobacco Mosaic Virus. Virol, 1970, 40: 199-211. 272. VAN LOON, L. C. M. REP, AND C. M. J. PIETERSE. Significance of inducible defense- related proteins in infected plants. Annual Review of Phytopathology, 2006, 44: 135-162. 273. VAN LOON, L. C., P. A. H. M. BAKKER, and C. M. J. PIETERSE. Systemic Resistance Induced by Rhizosphere Bacteria. Annu. Rev. Phytopathol, 1998, 36:453–483. 274. VAN LOON, L.C. AND E.A. VAN STRIEN. The families of pathogenesis related proteins and comparative analysis of PR-1 type proteins. Physiological and Molecular Plant Pathology, 1999, 55:85-97. 275. VAN LOON, L.C. Induced resistance in plants and the role of pathogenesis related proteins. European J. Plant Pathol, 1998, 103: 753-765. 276. VAN LOON, L.C. Induced resistance in plants and the role of pathogenesis-related proteins. European Journal Plant Pathology, 1997, 103:753-765. 277. VAN PEER, R., G. J. NIEMANN AND B. SCHIPPERS. Induced resistance and phytoalexin in biological control of fusarium wilt of carnation by pseudomonas sp. Strain WCS417r. phytopathology, 1991, 81: 728-734.278. VANCE CP, KIRK TK, SHERWOOD RT. Lignification as a mechanism of disease resistance. Annual Rev Phytopathol, 1980, 18: 259-288. 279. VÁZQUEZ-OVANDO, J. A.;, D. K. ANDRINO-LÓPEZ;, M. L. ADRIANO-ANAYA;, M SALVADOR-FIGUEROA. AND, I. OVANDO-MEDINA. Sensory and physico-chemical quality of banana fruits “Grand Naine” grown with biofertilizers. Afri. J. Agric. Res, 2012, 7(33):4620-4626. 280. VELUSAMY., PALANIYANDI, J. EBENEZAR IMMANUEL, SAMUEL S. GNANAMANICKAM. Rhizosphere Bacteria for Biocontrol of Bacterial Blight and Growth Promotion of Rice. Rice Science, 2013, 20(5): 356−362. 281. VERA P, TORNERO P, CONEJERO V. Cloning and expression analysis of a viroid-induced peroxidase from tomato plants. Mol Plant Microbe Interact, 1993, 6:790-794. 282. VERMA JP, YADAV J, TIWARI KN, KUMAR A. Effect of indigenous Mesorhizobium spp. And plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng, 2013, 51:282–228 283. VERNOOIJ, B., FRIEDRICH, L., AHI-GOY, P., STAUB, T., KESSMANN, H.,AND RYALS, J. 2,6-Dichloroisonicotinic acid-induced resistance to pathogens does not require the accumulation of salicylic acid. MOI. Plant-Microbe Interact. 1995, 8, 228-234. 284. VESSEY, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255, 571–586. doi:10.1023/A:1026037216893. 285. VICENTE, M. RIVAS-SAN AND PLASENCIA J. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 2011, Vol. 62, No. 10, pp. 3321–3338. 286. VINCENT. J. M. A Manual of the Practical study of the root Nodule Bacteria International Biological Programme London handbook, 1970,15:164. 287. VIVEROS.O. M., M.A. JORQUERA., D.E. CROWLEY., G. GAJARDO AND M.L. MORA. Mechanisms And Practical Considerations Involved In Plant Growth Promotion By Rhizobacteria. Journal of soil science and plant nutrition, 2010, 10 (3): 293 – 319. 288. WALPOLA BC, YOON MH. Isolation and characterization of phosphate solubilizing bacteria and their co-inoculation efficiency on tomato plant growth and phosphorous uptake. Afr J Microbiol Res, 2013, 7:266–275. 289. WANG., XIAO-QIANG, CONG-YANG YUAN, XIANG-DONG LI, ZHEN-YU LIU, SHIEN LU, YUN-JI, CHENG, XIU-ZHAI CHEN. Effects Of Plant Growth-Promoting Rhizobacteria On Controlling Tobacco Mosaic Virus. Plant Growth-Promoting Rhizobacteria (PGPR) For Sustainable Agriculture. Proceedings of the 2nd Asian PGPR Conference, 2011, August 21-24, Beijing, P.R. China.pp596. 290. WARD, E. R; UKNES S. J; WILLIAMS S. C; DINCHER S. S. AND WIEDERHOLD D. L. Coordinate gene activity in response to agents that induce systemic aquired resistance. Plant Cell, 1991, 3: 1085-1094. 291. WATT. B. K. AND A. L. MERRILL Composition of foods. U.S. Department of Agriculture, Hand book, 1963, No. 8. 190 p.292. WELLER D. Biological control of soil borne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 1988, 261:379-407. 293. WITING., D. A. “Natural Phenolic Compounds 1900-2000: A Bird‟s Eye View of a Century‟s Chemistry,” Natural Production Report, 2000, Vol. 18, pp. 583-606. 294. YAHAYA, S. U.. AND Y. M. BAKUNDI. Influence of salicylic acid on the growth of sweet pepper (cAPSICUM aNNUM l.) under moisture stress and non-stressed conditions, International Journal of Sciences and Research, 2017, Vol. 73 | No. 11. 295. YaLPANI, N; SILVERMAN P; WILSON T.M.A; KLEIER D.A; AND RASKIN, I. Salicylic acid is a systemic signal and inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell, 1991, 3:809-818. 296. YAMADA, Y.; OKADA, Y.; KONDO, K. Isolation And Characterization Of "Polarly Flagellated Intermediate Strains" In Acetic Acid Bacteria'. J. Gen. Appl. Microbiol, 1976, 22.. p237-245. 297. Yang., Jungwook, Joseph W. Kloepper and Choong-Min Ryu. Rhizosphere bacteria help plants tolerate abiotic stress. Plant Science Conferences. Plant Abiotic Stress Tolerance ,Vienna, Austria, 2009, p4. 298. ZAKI, M.F., Z.F. FAWZY; A.A. AHMED and A.S. TANTAWY. Application of phosphate dissolving bacteria for improving growth and productivity of two sweet pepper (capsicum annuum l.) Cultivars under newly reclaimed soil. Australian Journal of Basic and Applied Sciences, 2012, 6(3): 826-839 299. ZEHNDER., G. W.; CHANGBIN YAO, JOHN F. MURPHY, EDWARD R. SIKORA AND JOSEPH W. KLOPPER. Inducttion of Resistance in Tomato Against Cucumber mosaic virus by Plant Growth- Promoting Rhizobacteria. Printed in the Netherlands Biocontrol, 2000, 45: 127-137. 300. ZEHNDER., G. W.; MURPHY, J F.; J. S. EDWARD, AND J. W. KLOEPPER. Application of rhizobacteria for induced resistance. European Journal of Plant Pathology, 2001, 107:39-50. 301. ZHANG .LI-NA, DA-CHENG WANG, QIANG HU, XIANG-QUN DAI, YUE-SHENG XIE, QING LI, HUA-MEI LIU and JIAN-HUA GUO. Consortium of Plant Growth-Promoting Rhizobacteria Strains Suppresses Sweet Pepper Disease by Altering the Rhizosphere Microbiota, Front, Microbiol,2019, 10:1668. 302. ZHANG Z, LI Q, LI Z, STASWICK P, WANG M, ZHU Y, HE Z. Dual regulation role of GH3.5 in salicylic acid and auxin during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol, 2009, 145:450-464. 303. ZHANG,LI-NA., DA-CHENG .W., QIANG. H., XIANG-QUN. D., YUE-SHENG .X., QING. L., HUA-MEI. L. AND JIAN-HUA. G. Consortium of Plant Growth-Promoting Rhizobacteria Strains Suppresses Sweet Pepper Disease by Altering the Rhizosphere Microbiota. Plants Application of a Consortium, 2019, 10.3389. 304. ZITTER, T.A., & J.F. MURPHY. The plant health instructor: Cucumber mosaic virus. American Phytopathological Society.2009, http://www.apsnet.org/edcenter/intropp/lessons/viruses/Pages/Cucumbermosaic.aspx, (accessed 25 July 2014).
Тип
Thesis

2024-01-16
EndNote
Посмотрите в Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org agris@fao.org