Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand
2019
Dong, Zhiqiang | Zhu, Ling | Zhang, Wen | Huang, Rui | Lv, XiangWei | Jing, Xinyu | Yang, Zhenglong | Wang, Junliang | Qiu, Yuping
The transport and retention of nanoplastics (NP, 200 nm nanopolystyrene) functionalized with surface carboxyl (NPC), sulfonic (NPS), low-density amino (negatively charged, NPA−), and high-density amino (positively charged, NPA+) groups in seawater-saturated sand with/without humic acid were examined to explore the role of NP surface functionalities. The mass percentages of NP recovered from the effluent (Meff) with a salinity of 35 practical salinity units (PSU) were ranked as follows: NPC (19.69%) > NPS (16.37%) > NPA+ (13.33%) > NPA− (9.78%). The homoaggregation of NPS and NPA− was observed in seawater. The transport of NPA− exhibited a ripening phenomenon (i.e., a decrease in the transport rate with time) due to the high attraction of NP with previously deposited NP, whereas monodispersed NPA+ presented a low Meff value because of the electrostatic attraction between NPA+ and negatively charged sand. Retention experiments showed that the majority of NPC, NPS and NPA+ accumulated in a monolayer on the sand surface, whereas NPA− accumulated in multiple layers. Suwannee River humic acid (SRHA) could remarkably improve the transportability of NPC, NPS, and NPA− by increasing steric repulsion. The strong attraction between NPA+ and the deposited NPA+ in the presence of SRHA triggered the weak ripening phenomenon. As seawater salinity decreased from 35 PSU to 3.5 PSU, the increase in electrostatic repulsion of NP-NP and NP-sand enhanced the transport of NPC, NPS, and NPA−, and the ripening of NPA− breakthrough curves disappeared. In deionized water, NPC, NPS, and NPA− achieved complete column breakthrough because the electrostatic repulsion between NP and sand intensified. However, the Meff values of NPA+ in 3.5 PSU seawater and deionized water presented limited increments of 15.49% and 23.67%, respectively. These results indicated that the fate of NP in sandy marine environments were strongly affected by NP surface functionalities, seawater salinity, and coexisting SRHA.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library