Disturbance effects of PM10 on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia–reperfusion injury in isolated rat heart: protective role of vanillic acid
2016
Dianat, Mahin | Radmanesh, Esmat | Badavi, Mohammad | Mard, Seyed Ali | Goudarzi, Gholamraza
Myocardial infarction is the acute condition of myocardial necrosis that occurs as a result of imbalance between coronary blood supply and myocardial demand. Air pollution increases the risk of death from cardiovascular diseases (CVDs). The aim of this study was to investigate the effects of particulate matter (PM) on oxidative stress, the expression of inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA) level induced by ischemia–reperfusion injury, and the protective effects of vanillic acid (VA) in the isolated rat heart. Male Wistar rats were randomly divided into eight groups (n = 10), namely control, VAc, sham, VA, PMa (0.5 mg/kg), PMb (2.5 mg/kg), PMc (5 mg/kg), and PMc + VA groups. Particles with an aerodynamic diameter <10 μm (PM₁₀) was instilled into the trachea through a fine intubation tube. Two days following the PM₁₀ instillation, the animal’s hearts were isolated and transferred to a Langendorff apparatus. The hearts were subjected to 30 min of global ischemia followed by 60 min of reperfusion. The activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), xanthine oxidase (XOX), and lactate dehydrogenase (LDH) were measured using special kits. Reverse transcription polymerase chain reaction (RT-PCR) was used to determine levels of iNOS and eNOS mRNA. An increase in left ventricular end-diastolic pressure (LVEDP), S–T elevation, and oxidative stress in PM₁₀ groups was observed. Ischemia–reperfusion (I/R) induction showed a significant augment in the expression of iNOS mRNA level and a significant decrease in the expression eNOS mRNA level. This effect was more pronounced in the PM groups than in the control and sham groups. Vanillic acid caused a significant decrease in LVEDP, S–T elevation, and also a significant difference in eNOS mRNA expression level, antioxidant enzymes, iNOS mRNA expression level, and oxidative stress occurred on myocardial dysfunction after I/R in isolated rat hearts. This study showed that PM₁₀ exposure had devastating effects on the myocardial heart, oxidative stress, and eNOS and iNOS mRNA expression levels. Vanillic acid was able to improve these parameters. Vanillic acid as a potent antioxidant could also provide protection against particulate matter-induced toxicity.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library