Improved soil-crop system management aids in NH3 emission mitigation in China
2021
Sha, Zhipeng | Liu, Hejing | Wang, Jingxia | Ma, Xin | Liu, Xuejun | Misselbrook, T. (Tom)
High ammonia (NH₃) emissions from fertilized soil in China have led to various concerns regarding environmental safety and public health. In response to China's blue skies protection campaign, effective NH₃ reduction measures need to consider both mitigation efficiency and food security. In this context, we conducted a meta-analysis (including 2980 observations from 447 studies) to select effective measures based on absolute (AV) and yield-scaled (YSAV) NH₃ volatilization reduction potential, with the aim of establishing a comprehensive NH₃ mitigation framework covering various crop production sectors, and offering a range of potential solutions. The results showed that manipulating crop density, using an intermittent irrigation regime for paddy field rice, applying N as split applications or partially substituting inorganic fertilizer N with organic N sources could achieve reductions in AV and YSAV reduction of 10–20 %; adopting drip irrigation regimes, adding water surface barrier films to paddy fields, or using double inhibitor (urease and nitrification), slow-release or biofertilizers could achieve 20–40 % mitigation; plastic film mulching, applying fertilizer by irrigation or using controlled-release fertilizers could yield 40–60 % reduction; use of a urease inhibitor, fully substituting fertilizer N with organic N, or applying fertilizer by deep placement could decrease AV and YSAV by over 60 %. In addition, use of soil amendments, applying suitable inorganic N sources, or adopting crop rotation, intercropping or a rice-fish production model all had significant benefits to control AV. The adoption of any particular strategy should consider local accessibility and affordability, direct intervention by local/government authorities and demonstration to encourage the uptake of technologies and practices, particularly in NH₃ pollution hotspot areas. Together, this could ensure food security and environmental sustainability.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library