Epigallocatechin-3-gallate attenuates microcystin-LR-induced apoptosis in human umbilical vein endothelial cells through activation of the NRF2/HO-1 pathway
2018
Shi, Jun | Zhang, Min | Zhang, Libin | Deng, Huipin
Our previous study showed that the tea extract, epigallocatechin-3-gallate (EGCG), protects against microcystin-LR (MC-LR) -mediated apoptosis of human umbilical vein endothelial cells (HUVECs); however, the mechanism underlying MC-LR-induced HUVEC apoptosis remains incompletely understood. In this study, we investigated whether the nuclear factor erythroid-like 2 (NRF2)/heme oxygenase-1 (HO-1) pathway, which regulates antioxidant transcriptional regulation of oxidative stress and apoptosis, is involved in this process. Mitochondrial membrane potential (MMP) and caspase-3/-9 activities were evaluated in HUVECs by JC-1 staining and colorimetric activity assay, and a DCFH-DA fluorescent probe assay was used to quantitate reactive oxygen species (ROS) generation. The effects of MC-LR, EGCG, NF2, and HO-1 on HUVEC apoptosis were explored by western blotting and small interfering RNA (siRNA) analyses. MC-LR treatment downregulated HUVEC mitochondrial membrane potential, and decreased levels of cytochrome c release and activated caspase-3/-9, ROS generation, consequently inducing HUVEC apoptosis. EGCG treatment attenuated MC-LR-mediated HUVEC oxidative stress and mitochondria-related apoptosis. EGCG induced NRF2/HO-1 expression and activation in MC-LR treated HUVECs, while downregulation of NRF2/HO-1 by specific siRNAs revealed that NRF2/HO-1 signaling was involved in EGCG attenuation of MC-LR-induced HUVEC apoptosis. Our findings indicate that EGCG treatment protects against MC-LR-mediated HUVEC apoptosis via activation of NRF2/HO-1 signaling.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library