Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata
2019
Fazelian, Nasrin | Movafeghi, Ali | Yousefzadi, Morteza | Rahimzadeh, Mahsa
The toxic impacts of CuO nanoparticles (NPs) on the marine phytoplankton Nannochloropsis oculata were evaluated by measuring a number of biological parameters. Exposure to different concentrations of CuO-NPs (5–200 mg/L) significantly decreased the growth and content of chlorophyll a of N. oculata. The results showed that CuO-NPs were toxic to this microalga with a half maximal effective concentration (EC50) of 116.981 mg/L. Exposure to CuO-NPs increased the hydrogen peroxide (H₂O₂) content and induced the membrane damages. Moreover, the concentration of phenolic compounds was increased, while the levels of carotenoids were markedly decreased in comparison to the control sample. The activity of catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO) and lactate dehydrogenase (LDH) enzymes significantly was increased in response to CuO-NPs treatments. These results indicated that CuO-NPs stimulated the antioxidant defense system in N. oculata to protect the cells against the oxidative damages. The Fourier-transform infrared spectroscopy (FTIR) analyses showed that the main functional groups (C=O and C–O–C) interacted with CuO-NPs. The images of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed the cell membrane damage and the change of cell wall structure which may be contributed to the nanotoxicity. These findings may provide additional insights into the mechanisms of cytotoxicity induced by CuO-NPs.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library