Biogenic synthesis of silver nanoparticle by using secondary metabolites from Pseudomonas aeruginosa DM1 and its anti-algal effect on Chlorella vulgaris and Chlorella pyrenoidosa
2017
Kumari, Rima | Barsainya, Manjari | Singh, Devendra Pratap
Biogenic synthesis of silver nanoparticles (AgNPs) using extracellular metabolites from the bacterium Pseudomonas aeruginosa DM1 offers an eco-friendly and sustainable way of metal nanoparticle synthesis. The present work highlights the biotransformation of silver nitrate solution into AgNP, mediated by extracellular secondary metabolite pyoverdine, a siderophore produced by P. aeruginosa. The bioreduction of silver ions into AgNPs by using pyoverdine was recorded in terms of Fourier transform infrared spectroscopy (FTIR) analysis and color change in the reaction mixture (AgNO₃ + pyoverdine) from pale yellow to dark brown with absorption maxima at 415 nm. The results of X-ray diffraction (XRD) analysis of AgNPs showed its crystalline face-centered cubic structure. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures of AgNPs showed spherical morphology of AgNP in the range of 45–100 nm, with tendency of agglomerations. The energy-dispersive X-ray (EDX) analysis of particles provided strong signal of elemental silver with few minor peaks of other impurities. The present approach offers a unique in vitro method of metal nanoparticle synthesis by exogenously produced bacterial secondary metabolites, where direct contact between the toxic metal and biological resource material can be avoided. The biologically synthesized AgNPs are found to have anti-algal effects against two species of Chlorella (Chlorella vulgaris and Chlorella pyenoidosa), as indicated by zone of growth inhibition on algal culture plates. Further results exhibit concentration-dependent progressive inhibition of chlorophyll content in the algal cells by AgNPs, confirming the algicidal effect of AgNPs.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library