Potassium regulates the growth and toxin biosynthesis of Microcystis aeruginosa
2020
He, Yixin | Ma, Jianrong | Joseph, Vanderwall | Wei, Yanyan | Liu, Mengzi | Zhang, Zhaoxue | Li, Guo | He, Qiang | Li, Hong
Potassium (K⁺) is the most abundant cation in phytoplankton cells, but its impact on Microcystis aeruginosa (M. aeruginosa) has not been fully documented. This study presents evidence of how K⁺ availability affects the growth, oxidative stress and microcystin (MC) production of M. aeruginosa. The iTRAQ-based proteomic analysis revealed that during K⁺ deficiency, serious oxidative damage occurred and the photosynthesis-associated and ABC transporter-related proteins in M. aeruginosa were substantially downregulated. In the absence of K⁺, a 69.26% reduction in cell density was shown, and both the photosynthesis and iron uptake were depressed, which triggered a declined production of ATP and expression of MC synthetases genes (mcyA, B and D), and MC exporters (mcyH). Through the impairment of both the MC biosynthesis and MC transportation out of cells, K⁺ depletion caused an 85.89% reduction of extracellular MC content at the end of the study. However, with increasing in the available K⁺ concentrations, photosynthesis efficiency, the expression of ABC-transporter proteins, and the transcription of mcy genes displayed slight differences compared with those in the control group. This work represents evidence that K⁺ availability can regulate the physiological metabolic activity of M. aeruginosa and K⁺ deficiency leads to depressed growth and MC production in M. aeruginosa.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library