The relationship between the intensified heat waves and deteriorated summertime ozone pollution in the Beijing–Tianjin–Hebei region, China, during 2013–2017
2022
Wang, Ruonan | Bei, Naifang | Hu, Bo | Wu, Jiarui | Liu, Suixin | Li, Xia | Jiang, Qian | Tie, Xuexi | Li, Guohui
Summertime ozone (O₃) pollution has frequently occurred in the Beijing–Tianjin–Hebei (BTH) region, China, since 2013, resulting in detrimental impacts on human health and ecosystems. The contribution of weather shifts to O₃ concentration variability owing to climate change remains elusive. By combining regional air chemistry model simulations with near-surface observations, we found that anthropogenic emission changes contributed to approximately 23% of the increase in maximum daily 8-h average O₃ concentrations in the BTH region in June–July–August (JJA) 2017 (compared with that in 2013). With respect to the weather shift influence, the frequencies, durations, and magnitudes of O₃ exceedance were consistent with those of the heat wave events in the BTH region during JJA in 2013–2017. Intensified heat waves are a significant driver for worsening O₃ pollution. In particular, the prolonged duration of heat waves creates consecutive adverse weather conditions that cause O₃ accumulation and severe O₃ pollution. Our results suggest that the variability in extreme summer heat is closely related to the occurrence of high O₃ concentrations, which is a significant driver of deteriorating O₃ pollution.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library