Efficiency of water treatment with crushed shell of jatobá-do-cerrado (Hymenaea stigonocarpa) fruit to adsorb Cu(II) and Ni(II) ions: experimental and quantum chemical assessment of the complexation process
2021
Sales, Cleciane Souza | de Melo Camargo, Lilian Tatiane Ferreira | Araújo, Cleide Sandra Tavares | Carvalho-Silva, Valter Henrique | Signini, Roberta
The shell surrounding fruits of the jatobá-do-cerrado tree, in its natural state, was modified by the addition of HNO₃ and NaOH and used as an adsorbent in the removal of Cu(II) and Ni(II) from aqueous solutions. The untreated (JIN) and chemically modified (JCT) fruit shell samples were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and X-ray diffraction. Their efficiency as adsorbents in the removal of Cu(II) and Ni(II) ions from aqueous solutions was studied under different conditions of pH (2-9) and it was observed that the optimal pH for Cu (II) adsorption was 5.5 and for Ni (II) it was 6.0. The adsorption isotherms were obtained at different temperatures (298, 308, 318 K) and the qₘₐₓ values ranged from 33.96 to 41.00 mg g⁻¹. The adsorbents presented higher selectivity toward Cu ions (II). The thermodynamic analysis results suggest that the adsorption process studied is of a physical nature. Supported by quantum mechanical calculations, the interaction sites of the ion-cellulose and ion-lignin complexes were identified, evidencing the central role of water molecules in stabilization of the complexes. The experimental and theorical results indicate that JIN and JCT have good potential for the adsorption of Cu(II) and Ni(II) ions and are thus promising materials for the removal of other metal ions in aqueous systems.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library