Improving Biohydrogen Evolution from Glucose with Magnetic Activated Carbon
2019
Magnetic activated carbon (MAC) was fabricated to improve biohydrogen (bio-H₂) production. The MAC exhibited higher biocatalytic capability and better microbial immobilization than activated carbon (AC) during the bio-H₂ process. Glucose supplemented with 200 mg/L MAC obtained the highest H₂ yield of 214 mL/g glucose, much higher than that (130 mL/g glucose) of the control group without MAC. Suitable dosage such as 300 mg/L AC or 200 mg/L MAC promoted volatile fatty acid (VFA) formation and H₂ generation. Besides, the metabolites showed that AC or MAC did not change the bio-H₂ evolution pathway. Some possible biochemical mechanisms were as follows: MAC served as a microbial carrier to promote cell colonization and electron transfer rate, and it released Fe³⁺ to enhance glucose acidogenesis and Fe²⁺ to increase microbial concentration and activity in the bio-H₂ evolution. Graphical Abstract Magnetic activated carbon (MAC) was fabricated and subsequently used in bio-H₂ process through glucose-fed anaerobic mixed bacteria at 37 °C. The MAC acted as a carrier of anaerobes to promote cell growth and electron transfer rate, and released Fe³⁺ to increase glucose acidogenesis and Fe²⁺ to improve microbial concentration and activity in the bio-H₂ evolution process.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library