The influence of dissolved phosphorus molecular form on recalcitrance and bioavailability
2013
Li, Bo | Brett, Michael T.
Several studies have shown Soluble Reactive Phosphorus (SRP) analyses provide a poor index of dissolved phosphorus (P) bioavailability in natural systems. We tested 21 inorganic and organic P containing compounds with series of nutrient uptake and bioavailability bioassay experiments and chemical characterizations. Our results show that in 81% of cases, these compounds did not fit the classic assumption that SRP approximately equals Bioavailable P (BAP). Many organic compounds were classified as non-reactive, but had very rapid uptake kinetics and were nearly entirely bioavailable (e.g., several nucleic acids, ATP, RNA, DNA and phosphatidylcholine). Several inorganic compounds also classified as non-reactive but had high bioavailability (i.e., sodium tripolyphosphate and phosphorus pentoxide). Conversely, apatite was operationally classified as reactive, but had low bioavailability. Due to their tendency to alias as SRP, but recalcitrance and very low bioavailability, humic-(Al/Fe)-phosphorus complexes may play an especially important role in the dissolved phosphorus dynamics of natural systems.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library