Photocatalytic Degradation of Phytotoxic Substances in Waste Nutrient Solution by Various Immobilized Levels of Nano-TiO₂
2013
Qiu, Zhiping | Yang, Qichang | Liu, Wenke
The photocatalytic degradation effectiveness of six selected typical phytotoxic substances (ferulic, benzoic, gallic, salicylic, tannic, and acetic acid) by two levels of 10 nm TiO₂ (11 and 22 g/m²) immobilized on tiles under 254 nm of UV light irradiation was investigated. The results showed that the immobilized nano-TiO₂ significantly degraded all phytotoxic substances dissolved in distilled water, and the cumulative degradation rates of ferulic, benzoic, gallic, salicylic, tannic, and acetic acid reached 22.2, 33.6, 48.2, 56.9, 57.5, and 76.0 % after 6 h of treatment, respectively. Furthermore, the cumulative degradation rates of six phytotoxic substances by immobilized nano-TiO₂ were different remarkably, i.e., salicylic acid > benzoic acid, gallic acid > ferulic acid, acetic acid > tannic acid. The maximal photocatalytic degradation efficiencies of all phytotoxic substances appeared at the first 2 h in the three experiments. During the 6-h treatment period, the photocatalytic degradation efficiency of all phytotoxic substances decreased gradually. There was no significant difference in the photocatalytic degradation of benzoic acid and ferulic acid between the two levels of immobilized nano-TiO₂ treatments, whereas a significant difference was found in the photocatalytic degradation of salicylic acid, gallic acid, tannic acid, and acetic acid. In a word, nano-TiO₂ photocatalysis is an effective method to degrade phytotoxic substances. And the photocatalytic degradation effectiveness of six typical phytotoxic substances may be related to their structures.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library