Ambient particulate matter triggers defective autophagy and hijacks endothelial cell renewal through oxidative stress-independent lysosomal impairment
2021
Wang, Yan | Ma, Ying | Yao, Yongshuai | Liu, Qing | Pang, Yanting | Tang, Meng
Ambient particulate matter (APM) has been authenticated to exert hazards on human vascular endothelial cells, including abnormal autophagy. However, the potential reasons for autophagosome accumulation are still obscure. Since autophagy is a dynamic process, it is imperative to systemically consider the autophagic induction combined with its degradation to reflect realistic scenarios. Therefore, in the current study, different exposure durations were initially employed for the detection of autophagic marker proteins to assess the dynamic autophagic state preliminarily. Additionally, LC3 turn-over and autophagic flux assays were used to determine the specific cause of LC3II upregulation in EA.hy926 human vascular endothelial cells by a type of standard urban particulate matter, PM SRM1648a. As a result, PM SRM1648a stimulates excess autophagic vacuoles in EA. hy926 cells, in which the underlying causes are probably different at varying incubation endpoints. Intriguingly, LC3II upregulation was due to the intensifying autophagic initiation after 6 h of exposure, whereas as exposure period was extended to 24 h, overloaded autophagic vacuoles were attributed to the defective autophagy. Mechanistically, PM SRM1648a damages EA. hy926 cells by inducing lysosomal disequilibrium and resultant autophagic malfunction which are not directly mediated by oxidative stress. These data indicate that appropriate maintenance of lysosomal function and autophagic flux is probably a protective measure against APM-induced endothelial cell damage.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library