Enhancing the efficacy of electrolytic chlorination for ballast water treatment by adding carbon dioxide
2015
Cha, Hyung-Gon | Seo, Min-Ho | Lee, Heon-Young | Lee, Ji-Hyun | Lee, Dong-Sup | Shin, Kyoungsoon | Choi, Keun-Hyung
We examined the synergistic effects of CO2 injection on electro-chlorination in disinfection of plankton and bacteria in simulated ballast water. Chlorination was performed at dosages of 4 and 6ppm with and without CO2 injection on electro-chlorination. Testing was performed in both seawater and brackish water quality as defined by IMO G8 guidelines. CO2 injection notably decreased from the control the number of Artemia franciscana, a brine shrimp, surviving during a 5-day post-treatment incubation (1.8 and 2.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO+CO2) compared with water electro-chlorinated only (1.2 and 1.3 log10 reduction in seawater and brackish water, respectively at 6ppm TRO). The phytoplankton Tetraselmis suecica, was completely disinfected with no live cell found at >4ppm TRO with and without CO2 addition. The effects of CO2 addition on heterotrophic bacterial growth was not different from electro-chlorination only. Total residual oxidant concentration (TRO) more rapidly declined in electro-chlorination of both marine and brackish waters compared to chlorine+CO2 treated waters, with significantly higher amount of TRO being left in waters treated with the CO2 addition. Total concentration of trihalomethanes (THMs) and haloacetic acids (HAAs) measured at day 0 in brackish water test were found to be 2- to 3-fold higher in 6ppm TRO+CO2-treated water than in 6ppm TRO treated water. The addition of CO2 to electro-chlorination may improve the efficiency of this sterilizing treatment of ballast water, yet the increased production of some disinfection byproducts needs further study.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library