Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies
2019
Nawanīta Kaura, | Manpreet Kaur, | Singh, Dhanwinder
Mesoporous nanocomposite of MgFe₂O₄ nanoparticles (NPs) and graphene oxide (GO) was synthesized using facile sonication method. Its potential was tested for the removal of Ni (II) and Pb (II) ions from water. The 2:1 w/w ratio of MgFe₂O₄:GO was optimum for the maximum removal of metal ions. Nanocomposite was characterized employing XRD, FT-IR, VSM, SEM-EDX, XPS, TEM and BET analyses. It possessed higher surface area (63.0 m² g⁻¹) than pristine NPs. Batch experiments were performed to study the effect of process parameters viz. pH, dose, contact time, initial metal ion concentration, co-existing ions and temperature. Statistical parameters were also determined. Langmuir, Temkin and Freundlich models were followed in perfect way. Langmuir model showed the monolayer adsorption of metal ions onto the homogeneous surface of nanocomposite with maximum adsorption capacity of 100.0 mg g⁻¹ and 143.0 mg g⁻¹ for Ni (II) and Pb (II) ions respectively, which was higher than the same for MgFe₂O₄ NPs and GO. Kinetic studies demonstrated that the pseudo-second order model well described the adsorption process. The ΔS° and ΔG° values revealed spontaneous nature of adsorption process. Positive ΔH° values using MgFe₂O₄ NPs and nanocomposite indicated endothermic removal; whereas using GO the removal was exothermic. The observed trend for coexisting ions correlated with hydrated ion radii. Efficiency of the adsorbents was also tested for realistic nickel electroplating industrial effluent. Apart from the higher adsorption potential of nanofabricated composite, its magnetic properties are advantageous in utilizing metal loaded nanocomposite for adsorption-desorption cycles for reuse.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library