Exposure assessment of PM2.5 using smart spatial interpolation on regulatory air quality stations with clustering of densely-deployed microsensors
2022
Chen, Pi-Cheng | Lin, Yuting
Accurate mapping of air pollutants is essential for epidemiological studies and environmental risk assessments. Concentrations measured by air quality monitoring stations (AQMS) have primarily been used to assess the exposure of PM₂.₅. However, the low coverage and amount of monitoring stations affect the errors of spatial interpolation or geostatistical estimates. In contrast to other integrated approaches developed for improved air pollution estimates, this study utilizes data from low-cost microsensors densely deployed in Taiwan to improve the popular spatial interpolation approach called inverse distance weighting (IDW). A large dataset from thousands of low-cost sensors could improve spatial interpolation by describing the distribution of PM₂.₅ in detail. Therefore, this study presents a clustering-based method to assess the distribution of PM₂.₅. Then, a smarter IDW is performed based on correlated observations from the selected air quality stations. The publicly available data chosen for this investigation pertained to Taiwan, which has deployed 74 monitoring stations and more than 11,000 low-cost sensors since December 2020. The results of leave-one-out cross-validation indicate that there are fewer PM₂.₅ estimation errors in the developed approach than in estimations that use kriging across almost all of the months and sampled dates of 2019 and 2020, particularly those with higher PM₂.₅ spatial heterogeneities. Spatial heterogeneities could result in more significant estimation errors in mainstream approaches. The root mean square error of the monthly average estimate for PM₂.₅ ranged from 1.17 to 3.86 μg/m³. We also found that the clustering of one month characterizing the pattern of PM₂.₅ distribution could perform well in spatial interpolations based on historical data from monitoring stations. According to the information on the openaq platform, low-cost sensors are in demand in cities and areas. This trend might pave the way for the application of the proposed approach in other areas for superior exposure assessments.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library