Estimating regional N application rates for rice in China based on target yield, indigenous N supply, and N loss
2020
Ding, Wencheng | Xu, Xinpeng | He, Ping | Zhang, Jiajia | Cui, Zhenling | Zhou, Wei
Decision-making related to nitrogen (N) applications based solely on historic experience is still widespread in China, the country with the largest rice production and N fertilizer use. By connecting N application rates with target N uptake, indigenous N supply, and N loss estimates collected from 1078 on-farm experiments, we determined regional N application rates for five rice-based agroecosystems, including a quantification of the reduction potential of application rates when using low-loss N sources, such as organic N and slow-release N. Based on our results, the moderate regional N application rates were 165, 180, 160, 153, and 173 kg N ha⁻¹ for single, middle-CE (Central and Eastern China), middle-SW (Southwestern China), early, and late rice, respectively; lower (99–148 kg N ha⁻¹) and upper (195–217 kg N ha⁻¹) limits of N application rates were developed for situations with sufficient and insufficient indigenous N supplies, respectively. The depletion of soil N mineralization was quantified as 46.8–67.3 kg ha⁻¹, and straw return is determined to be a robust measure to maintain soil N balance. Substituting manure or slow-release N for conventional N fertilizer significantly decreased N losses via NH₃ volatilization, leaching, runoff, and N₂O emissions. Overall, we observed 7.2–11.3 percent point reductions of N loss rate for low-loss N sources when compared to conventional N applications. On average, total N application rates could be theoretically reduced by 27 kg N ha⁻¹ by using a slow-release N fertilizer, or by 30 kg N ha⁻¹ when using manure due to their effectiveness at decreasing system N losses. Greater productivity, sustainable soil fertility, and a lower risk of N pollution would result from the ideal N application rate coupled with appropriate management practices. Widespread adoption of using low-loss N sources could become a key solution for future reduction in environmental N pollution and agricultural N inputs.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library