Developmental exposure to lead at environmentally relevant concentrations impaired neurobehavior and NMDAR-dependent BDNF signaling in zebrafish larvae
2020
Zhao, Jing | Zhang, Qing | Zhang, Bin | Xu, Ting | Yin, Daqiang | Gu, Weihua | Bai, Jianfeng
Lead (Pb) is one of the predominant heavy metals in e-waste recycling arears and recognized as a notorious environmental neurotoxic substance. However, whether Pb at environmentally relevant concentrations could cause neurobehavioral alteration and even what kind of signaling pathway Pb exposure would disrupt in zebrafish were not fully uncovered. In the present study, 6 h postfertilization (hpf) zebrafish embryos were exposed to Pb at the concentrations of 0, 5, 10, and 20 μg/L until 144 hpf. Then the neurobehavioral indicators including locomotor, turnings and social behaviors, and the expressions of selected genes concerning brain-derived neurotrophic factor (BDNF) signaling were investigated. The results showed that significant changes were obtained under 20 μg/L Pb exposure. The hypoactivity of zebrafish larvae in locomotor and turning behaviors was induced during the dark period, while hyperactivity was observed in a two-fish social assay during the light period. The significantly downregulation of genes encoding BDNF, its receptor TrkB, and N-methyl-D-aspartate glutamate receptor (NMDAR) suggested the involvement of NMDAR-dependent BDNF signaling pathway. Overall, our study demonstrated that developmental exposure to Pb at environmentally relevant concentrations caused obvious neurobehavioral impairment of zebrafish larvae by disrupting the NMDAR-dependent BDNF signaling, which could exert profound ecological consequences in the real environment.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library