Behavior of Fluoride Removal by Aluminum Modified Zeolitic Tuff and Hematite in Column Systems and the Thermodynamic Parameters of the Process
2015
Teutli-Sequeira, A. | Solache-Ríos, M. | Martínez-Miranda, V. | Linares-Hernández, I.
The removal of fluoride from water by an aluminum-modified hematite and a zeolitic tuff using column adsorption techniques, as well as the effects of temperature, were investigated. Column experiments were carried out using aqueous solutions and drinking water with different bed depths. The dynamics of the adsorption process were fitted to Adams–Bohart, Thomas and bed depth service time (BDST) models. The Thomas model was found suitable for the description of breakthrough curve at all experimental conditions, while Adams–Bohart model was only useful for an initial part of dynamic behavior of the removal of fluoride from water by aluminum-modified hematite and zeolitic tuff columns. The highest uptake capacities (3.24 and 2.37 mg/g for the modified zeolitic tuff and hematite respectively) were obtained with a 4-cm bed depth column, an inlet 10 mg/L fluoride solution, and a flow rate of 1 mL/min, but the adsorption capacities decreased when drinking water were used. Experimental data were good fitted to both models, and the parameters of the processes calculated indicated that these materials are suitable for removal of fluoride from water in column systems. Thermodynamic parameters (ΔS, ΔG, and ΔH) were calculated for the aluminum-modified hematite and zeolitic tuff from the sorption data at temperatures between 287 and 333 K, indicating spontaneous and thermodynamically favorable adsorption and suggest that the sorption of fluoride ions by both adsorbents is an endothermic process and the mechanism is physical sorption.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library