Potential of Pyrene Removal from Urban Environments by the Activities of Bacteria and Biosurfactant on Ornamental Plant Leaves
2017
Siriratruengsuk, Weerayuth | Furuuchi, Masami | Prueksasit, Tassanee | Luepromchai, Ekawan
Pyrene is a dominant PAH in urban environments. It can combine with airborne particulates and accumulate on plant leaves. To investigate pyrene’s biodegradation potential, this study initially monitored the abundance of airborne and phyllosphere bacteria. The number of airborne pyrene-degrading bacteria ranged from 22 to 152 CFU m⁻³ air, and more bacteria were found in the proximity of the ornamental plant swath than along the roadside. Pyrene-degrading bacteria averaged 5 × 10⁴ CFU g⁻¹ on the leaves of all tested plant species and accounted for approximately 7% of the total population. Four pyrene-degrading bacteria were isolated from I. coccinea to use as model phyllosphere bacteria. To increase the bioavailability of pyrene, a lipopeptide biosurfactant was applied. Kocuria sp. IC3 showed the highest pyrene degradation in the medium containing biosurfactant. The removal of deposited pyrene at 30 μg g⁻¹ leaf was monitored in a glass chamber containing I. coccinea twigs. After 14 days, leaves containing both Kocuria sp. IC3 and 0.1× CMC biosurfactant showed 100% pyrene removal with the most abundant bacteria. The system with biosurfactant alone also enhanced the activities of phyllosphere bacteria with 94% pyrene removal. Consequently, the bioremediation of deposited pyrene could be achieved by spraying biosurfactant on ornamental shrubs.
Показать больше [+] Меньше [-]Ключевые слова АГРОВОК
Библиографическая информация
Эту запись предоставил National Agricultural Library